Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 940-884-3 | CAS number: -
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Genetic toxicity: in vitro
Administrative data
- Endpoint:
- in vitro gene mutation study in bacteria
- Remarks:
- Type of genotoxicity: gene mutation
- Type of information:
- experimental study
- Adequacy of study:
- key study
- Study period:
- 14 May 2015 - 04 June 2015
- Reliability:
- 1 (reliable without restriction)
- Rationale for reliability incl. deficiencies:
- guideline study
Cross-reference
- Reason / purpose for cross-reference:
- reference to same study
Data source
Reference
- Reference Type:
- study report
- Title:
- Unnamed
- Year:
- 2 015
- Report date:
- 2015
Materials and methods
Test guidelineopen allclose all
- Qualifier:
- according to guideline
- Guideline:
- OECD Guideline 471 (Bacterial Reverse Mutation Assay)
- Deviations:
- no
- Qualifier:
- according to guideline
- Guideline:
- EU Method B.13/14 (Mutagenicity - Reverse Mutation Test Using Bacteria)
- Deviations:
- no
- Qualifier:
- according to guideline
- Guideline:
- EPA OPPTS 870.5100 - Bacterial Reverse Mutation Test (August 1998)
- Deviations:
- no
- Qualifier:
- according to guideline
- Guideline:
- JAPAN: Guidelines for Screening Mutagenicity Testing Of Chemicals
- Deviations:
- no
- GLP compliance:
- yes (incl. QA statement)
- Type of assay:
- bacterial reverse mutation assay
Test material
- Reference substance name:
- dicalcium bis(oxosilanebis(olate)) silanedione
- EC Number:
- 940-884-3
- Molecular formula:
- Not applicable for inorganic UVCB
- IUPAC Name:
- dicalcium bis(oxosilanebis(olate)) silanedione
- Test material form:
- solid
Constituent 1
Method
- Target gene:
- Not required
Species / strainopen allclose all
- Species / strain / cell type:
- S. typhimurium TA 1535, TA 1537, TA 98 and TA 100
- Details on mammalian cell type (if applicable):
- Non-mammalian study
- Species / strain / cell type:
- E. coli WP2 uvr A
- Details on mammalian cell type (if applicable):
- Non-mammalian study
- Metabolic activation:
- with and without
- Metabolic activation system:
- phenobarbitone/β-naphthoflavone induced rat liver S9
- Test concentrations with justification for top dose:
- Experiment 1 - Plate Incorparation Method - 1.5, 5, 15, 50, 150, 500, 1500 and 5000 µg/plate
Experiment 2 - Preincubation Method - 15, 50, 150, 500, 1500 and 5000 µg/plate - Vehicle / solvent:
- - Vehicle/Solvents used : sterile distilled water.
- The test item was insoluble in sterile distilled water, dimethyl sulphoxide, dimethyl formamide, polyethylene glycol 400 and acetonitrile at 50 mg/mL, acetone at 200 mg/mL and tetrahydrofuran at 200 mg/mL in solubility checks performed in–house. The test item formed the best doseable suspension in sterile distilled water at a maximum concentration of 25 mg/mL, therefore, this solvent was selected as the vehicle.
Controlsopen allclose all
- Untreated negative controls:
- no
- Negative solvent / vehicle controls:
- yes
- True negative controls:
- yes
- Positive controls:
- yes
- Positive control substance:
- N-ethyl-N-nitro-N-nitrosoguanidine
- Remarks:
- 2, 3, 5 µg/plate respectively for WP2uvrA, TA100, TA1535
- Untreated negative controls:
- no
- Negative solvent / vehicle controls:
- yes
- True negative controls:
- yes
- Positive controls:
- yes
- Positive control substance:
- 9-aminoacridine
- Remarks:
- 80 μg/plate for TA1537
- Untreated negative controls:
- no
- Negative solvent / vehicle controls:
- yes
- True negative controls:
- yes
- Positive controls:
- yes
- Positive control substance:
- 4-nitroquinoline-N-oxide
- Remarks:
- 0.2 μg/plate for TA98
- Untreated negative controls:
- no
- Negative solvent / vehicle controls:
- yes
- True negative controls:
- yes
- Positive controls:
- yes
- Positive control substance:
- other: 2-Aminoanthracene (2AA)
- Remarks:
- 1, 2, 10 µg/plate for TA100, TA1535&TA1537
- Untreated negative controls:
- no
- Negative solvent / vehicle controls:
- yes
- True negative controls:
- yes
- Positive controls:
- yes
- Positive control substance:
- benzo(a)pyrene
- Remarks:
- 5 μg/plate for TA98
- Details on test system and experimental conditions:
- METHOD OF APPLICATION: in agar (plate incorporation) at multiple dose levels, in triplicate, both with and without the addition of a rat liver homogenate metabolising system (10% liver S9 in standard co-factors).
EXPERIMENT 1 - PLATE INCORPARATION METHOD
Dose selection
- The test item was tested using the following method.
- The maximum concentration was 5000 µg/plate (the maximum recommended dose level).
- Eight concentrations of the test item (1.5, 5, 15, 50, 150, 500, 1500 and 5000 µg/plate) were assayed in triplicate against each tester strain, using the direct plate incorporation method.
Without Metabolic Activation
- 0.2 mL of the appropriate concentration of test item or vehicle or 0.1 mL of the appropriate positive control was added to 2 mL of molten trace amino-acid supplemented media containing 0.1 mL of one of the bacterial strain cultures and 0.5 mL of phosphate buffer.
- These were mixed and overlayed onto a Vogel-Bonner agar plate.
- Negative (untreated) controls were also performed on the same day as the mutation test.
- Each concentration of the test item, appropriate positive, vehicle and negative controls, and each bacterial strain, was assayed using triplicate plates.
With Metabolic Activation
- The procedure followed was the same as described above except that following the addition of the test item formulation and bacterial culture; 0.5 mL of S9-mix was added to the molten trace amino-acid supplemented media instead of phosphate buffer.
Incubation and Scoring
- All of the plates were incubated at 37 °C+/- 3 °C for approximately 48 hours and scored for the presence of revertant colonies using an automated colony counting system.
- The plates were viewed microscopically for evidence of thinning (toxicity).
- Manual counts were performed at 5000µg/plate due to excessive test item precipitation.
- Addition manual counts were required due to revertant colonies spreading slightly, distorting the plate count.
As Experiment 1 was deemed negative, Experiment 2 was performed using the pre-incubation method in the presence and absence of metabolic activation
EXPERIMENT 2 - PRE-INCUBATION METHOD
Dose selection
- The dose range used for the main test was determined by the results of Experiment 1 and was 15 to 5000 µg/plate.
- Six test item concentration were selected to achieve both four non-toxic dose levels and the potential toxic limit of the test item following the change in test methodology.
Without Metabolic Activation
- 0.1mL of appropriate bacterial strain culture, 0.5mL of phosphate buffer and 0.2mL of the test item formulation or solvent or 0.1mL of appropriate positive control were incubated at 37°C ± 3°C for 20 minutes (with shaking) prior to addition of 2mL of molten amino-acid supplemented media and subsqquent plating onto Vogel-Bonner plates.
- Negative (untreated) controls were also performed on the same day as the muttaion test emplying the plate incorparation method.
- All testing was performed in triplicate.
With Metabolic Activation
- The procedure was the same as described above except that following the addition of the test item formulation and bacterial strain culture, 0.5 mL of S9-mix was added to the tube instead of phosphate buffer, prior to incubation at 37 °C± 3 °C for 20 minutes (with shaking) and addition of molten amino-acid supplemented media.
- All testing for this experiment was performed in triplicate.
Incubation and Scoring
- All of the plates were incubated at 37 °C +/- 3 °C for approximately 48 hours and scored for the presence of revertant colonies using an automated colony counting system.
- The plates were viewed microscopically for evidence of thinning (toxicity).
- Manual counts were performed at 5000µg/plate because of excessive test item preciptiation.
- Additional manual counts were rrequired, predominantly due to interference in the base agar; minor precipitation of salts/dust particles/marks on the base of the plates slightly distorting the counts.
NUMBER OF REPLICATIONS: 3 replicates of each strain at each concentration both in the presence and absence of S9
NUMBER OF CELLS EVALUATED:
All strains 0.9 to 9 * 10>9
ACCEPTANCE CRITERIA:
All tester strain cultures should exhibit a characteristic number of spontaneous revertants per plate in the vehicle and untreated controls (negative controls). Acceptable ranges are presented as follows:
TA1535: 7 to 40
TA100: 60 to 200
TA1537: 2 to 30
TA98: 8 to 60
WP2uvrA: 10 to 60 - Evaluation criteria:
- Evaluation Criteria
There are several criteria for determining a positive result. Any, one, or all of the following can be used to determine the overall result of the study:
1. A dose-related increase in mutant frequency over the dose range tested (De Serres and Shelby, 1979).
2. A reproducible increase at one or more concentrations.
3. Biological relevance against in-house historical control ranges.
4. Statistical analysis of data as determined by UKEMS (Mahon et al., 1989).
5. Fold increase greater than two times the concurrent solvent control for any tester strain
(especially if accompanied by an out-of-historical range response (Cariello and
Piegorsch, 1996)).
A test item will be considered non-mutagenic (negative) in the test system if the above criteria are not met. Although most experiments will give clear positive or negative results, in some instances the data generated will prohibit making a definite judgment about test item activity. Results of this
type will be reported as equivocal. - Statistics:
- MAHON, G.A.T., et al (1989). Analysis of data from microbial colony assays. In: KIRKLAND D.J., (eds.). Statistical Evaluation of Mutagenicity Test Data: UKEMS sub-committee on guidelines for mutagenicity testing. Cambridge University Press Report, pp. 26-65.
Results and discussion
Test resultsopen allclose all
- Key result
- Species / strain:
- S. typhimurium TA 1535, TA 1537, TA 98 and TA 100
- Metabolic activation:
- with and without
- Genotoxicity:
- negative
- Cytotoxicity / choice of top concentrations:
- no cytotoxicity nor precipitates, but tested up to recommended limit concentrations
- Vehicle controls validity:
- valid
- Untreated negative controls validity:
- valid
- Positive controls validity:
- valid
- Key result
- Species / strain:
- E. coli WP2 uvr A
- Metabolic activation:
- with and without
- Genotoxicity:
- negative
- Cytotoxicity / choice of top concentrations:
- no cytotoxicity nor precipitates, but tested up to recommended limit concentrations
- Vehicle controls validity:
- valid
- Untreated negative controls validity:
- valid
- Positive controls validity:
- valid
- Remarks on result:
- other: all strains/cell types tested
- Remarks:
- Migrated from field 'Test system'.
Any other information on results incl. tables
See attached Tables 2 - 5 for results
- The maximum dose level of the test item in the first experiment was selected as the maximum recommended dose level of 5000 μg/plate.
- There was no visible reduction in the growth of the bacterial background lawn at any dose level, either in the presence or absence of metabolic activation (S9-mix), in the first mutation test (plate incorporation method)
- Consequently the same maximum dose level was used in the second mutation test.
- Similarly, there was no visible reduction in the growth of the bacterial background lawn at any dose level, either in the presence or absence of metabolic activation (S9-mix), in the second mutation test (pre-incubation method).
- A test item precipitate (black specks in appearance) was observed at 5000 μg/plate in Experiment 1 (plate incorporation method) and from 1500 μg/plate in the second mutation test (pre-incubation method). This observation did not prevent the scoring of revertant colonies.
- There were no significant increases in the frequency of revertant colonies recorded for any of the bacterial strains, with any dose of the test item, either with or without metabolic activation (S9-mix) in Experiment 1 (plate incorporation method).
- Similarly, no toxicologically significant increases in the frequency of revertant colonies were recorded for any of the bacterial strains, with any dose of the test item, either with or without metabolic activation (S9-mix) in Experiment 2 (pre-incubation method).
- Small, statistically significant increases in revertant colony frequency were observed in the second mutation test at 1500 μg/plate (TA100 and TA1535) in the absence of S9-mix only. These increases were considered to be of no biological relevance because there was no evidence of a dose-response relationship or reproducibility. Furthermore, the individual revertant counts at the statistically significant dose levels were within the in-house historical untreated/vehicle control range for each tester strain and the maximum fold increase was only 1.5 times the concurrent vehicle controls
Applicant's summary and conclusion
- Conclusions:
- The genetic toxicity of the test item was assessed in accordance with OECD Guideline 471. The test item was considered to be non-mutagenic under the conditions of this test.
- Executive summary:
Introduction
The test method was designed to be compatible with the guidelines for bacterial mutagenicity testing published by the major Japanese Regulatory Authorities including METI, MHLW and MAFF, the OECD Guidelines for Testing of Chemicals No. 471 "Bacterial Reverse Mutation Test", Method B13/14 of Commission Regulation (EC) number 440/2008 of 30 May 2008 and the USA, EPA OCSPP harmonized guideline - Bacterial Reverse Mutation Test.
Methods
Salmonella typhimurium strains TA1535, TA1537, TA98 and TA100 and Escherichia coli strain WP2uvrA were treated with suspensions of the test item using both the Ames plate incorporation and pre-incubation methods at up to eight dose levels, in triplicate, both with and without the addition of a rat liver homogenate metabolizing system (10% liver S9 in standard co-factors). The dose range for Experiment 1 was predetermined and was 1.5 to 5000 μg/plate. The experiment was repeated on a separate day (pre-incubation method) using fresh cultures of the bacterial strains and fresh test item formulations. The dose range was amended following the results of Experiment 1 and was 15 to 5000 μg/plate. Six test item concentrations were selected in Experiment 2 in order to achieve both four non-toxic dose.
Results
The vehicle (sterile distilled water) control plates gave counts of revertant colonies within the normal range. All of the positive control chemicals used in the test induced marked increases in the frequency of revertant colonies, both with or without metabolic activation. Thus, the sensitivity of the assay and the efficacy of the S9-mix were validated. The maximum dose level of the test item in the first experiment was selected as the maximum recommended dose level of 5000 μg/plate. There was no visible reduction in the growth of the bacterial background lawn at any dose level, either in the presence or absence of metabolic activation (S9-mix), in the first mutation test (plate incorporation method) and consequently the same maximum dose level was used in the second mutation test. Similarly, there was no visible reduction in the growth of the bacterial background lawn at any dose level, either in the presence or absence of metabolic activation (S9-mix), in the second mutation test (pre-incubation method). A test item precipitate (black specks in appearance) was observed at 5000 μg/plate in Experiment 1 (plate incorporation method) and from 1500 μg/plate in the second mutation test (pre-incubation method). This observation did not prevent the scoring of revertant colonies.
There were no significant increases in the frequency of revertant colonies recorded for any of the bacterial strains, with any dose of the test item, either with or without metabolic activation (S9-mix) in Experiment 1 (plate incorporation method). Similarly, no toxicologically significant increases in the frequency of revertant colonies were recorded for any of the bacterial strains, with any dose of the test item, either with or without metabolic activation (S9-mix) in Experiment 2 (pre-incubation method). Small, statistically significant increases in revertant colony frequency were observed in the second mutation test at 1500 μg/plate (TA100 and TA1535) in the absence of S9-mix only. These increases were considered to be of no biological relevance because there was no evidence of a dose-response relationship or reproducibility. Furthermore, the individual revertant counts at the statistically significant dose levels were within the in-house historical untreated/vehicle control range for each tester strain and the maximum fold increase was only 1.5 times the concurrent vehicle controls.
Conclusion
Petrit T was considered to be non-mutagenic under the conditions of this test.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.