Registration Dossier
Registration Dossier
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 213-191-2 | CAS number: 928-95-0
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data

Genetic toxicity: in vitro
Administrative data
- Endpoint:
- in vitro gene mutation study in bacteria
- Type of information:
- experimental study
- Adequacy of study:
- key study
- Study period:
- From 01 December 2017 to 18 December 2017
- Reliability:
- 1 (reliable without restriction)
- Rationale for reliability incl. deficiencies:
- guideline study
Data source
Reference
- Reference Type:
- study report
- Title:
- Unnamed
- Year:
- 2 018
- Report date:
- 2018
Materials and methods
Test guideline
- Qualifier:
- according to guideline
- Guideline:
- OECD Guideline 471 (Bacterial Reverse Mutation Assay)
- Deviations:
- no
- GLP compliance:
- yes (incl. QA statement)
- Type of assay:
- bacterial reverse mutation assay
Test material
- Reference substance name:
- trans-hex-2-en-1-ol
- EC Number:
- 213-191-2
- EC Name:
- trans-hex-2-en-1-ol
- Cas Number:
- 928-95-0
- Molecular formula:
- C6H12O
- IUPAC Name:
- hex-2-en-1-ol
- Reference substance name:
- Hexan-1-ol
- EC Number:
- 203-852-3
- EC Name:
- Hexan-1-ol
- Cas Number:
- 111-27-3
- Molecular formula:
- C6H14O
- IUPAC Name:
- hexan-1-ol
- Reference substance name:
- not applicable - Various minor constituents believed to be isomers of trans hex-2-en-1-ol and structurally related substances
- Molecular formula:
- not applicable - Various minor constituents believed to be isomers of trans hex-2-en-1-ol and structurally related substances
- IUPAC Name:
- not applicable - Various minor constituents believed to be isomers of trans hex-2-en-1-ol and structurally related substances
- Test material form:
- liquid
Constituent 1
impurity 1
impurity 2
Method
- Target gene:
- Histidine locus in the genome of Salmonella typhimurium and tryptophan locus in the genome of Escherichia coli
Species / strain
- Species / strain / cell type:
- S. typhimurium TA 1535, TA 1537, TA 98, TA 100 and E. coli WP2
- Metabolic activation:
- with and without
- Metabolic activation system:
- Rat liver homogenate metabolizing system (10% liver S9 in standard co-factors)
- Test concentrations with justification for top dose:
- Experiment 1: 1.5, 5, 15, 50, 150, 500, 1500 and 5,000 μg/plate.
Experiment 2: 1.5, 5, 15, 50, 150, 500, 1500, and 5,000 μg/plate.
5,000 µg/plate was selected as the top dose in accordance with the OECD Testing Guideline 471. - Vehicle / solvent:
- - Vehicle(s)/solvent(s) used: DMSO
- Justification for choice of solvent/vehicle: The test item was immiscible in sterile distilled water at 50 mg/mL but was fully miscible in DMSO at the same concentration in solubility checks performed in-house. DMSO was therefore selected as the vehicle.
Controls
- Untreated negative controls:
- yes
- Negative solvent / vehicle controls:
- yes
- True negative controls:
- no
- Positive controls:
- yes
- Positive control substance:
- 4-nitroquinoline-N-oxide
- 9-aminoacridine
- N-ethyl-N-nitro-N-nitrosoguanidine
- benzo(a)pyrene
- other: 2-Aminoanthracene
- Details on test system and experimental conditions:
- Test Item Preparation and Analysis
The test item was immiscible in sterile distilled water at 50 mg/mL but was fully miscible in dimethyl sulphoxide at the same concentration in solubility checks performed in-house. Dimethyl sulphoxide was therefore selected as the vehicle.
The test item was accurately weighed and, on the day of each experiment, approximate half-log dilutions prepared in dimethyl sulphoxide by mixing on a vortex mixer. Formulated concentrations were adjusted to allow for the stated water/impurity content (3.48%) of the test item. Prior to use, the solvent was dried to remove water using molecular sieves i.e. 2 mm sodium alumino-silicate pellets with a nominal pore diameter of 4 x 10-4 microns.
All formulations were used within four hours of preparation and were assumed to be stable for this period. Analysis for concentration, homogeneity and stability of the test item formulations is not a requirement of the test guidelines and was, therefore, not determined. This is an exception with regard to GLP and has been reflected in the GLP compliance statement.
Test for Mutagenicity: Experiment 1 - Plate Incorporation Method
The test item was tested using the following method. The maximum concentration was 5000 μg/plate (the maximum recommended dose level). Eight concentrations of the test item (1.5, 5, 15, 50, 150, 500, 1500 and 5000 μg/plate) were assayed in triplicate against each tester strain, using the direct plate incorporation method.
0.1 mL of the appropriate concentration of test item, solvent vehicle or appropriate positive control was added together with 0.1 mL of one of the bacterial strain cultures and 0.5 mL of phosphate buffer to 2 mL of molten, trace amino-acid supplemented media. These were then mixed and overlayed onto a Vogel-Bonner agar plate. Negative (untreated) controls were also performed on the same day as the mutation test. Each concentration of the test item, appropriate positive, vehicle and negative controls, and each bacterial strain, was assayed using triplicate plates.
With metabolic activation, the procedure was the same except that following the addition of the test item formulation and bacterial culture, 0.5 mL of S9-mix was added to the molten, trace amino-acid supplemented media instead of phosphate buffer.
All of the plates were incubated at 37 ± 3 °C for approximately 48 hours and scored for the presence of revertant colonies using an automated colony counting system. The plates were viewed microscopically for evidence of thinning (toxicity).
Test for Mutagenicity: Experiment 2 – Pre-Incubation Method
As the result of Experiment 1 was deemed negative, Experiment 2 was performed using the pre-incubation method in the presence and absence of metabolic activation.
The dose range used for Experiment 2 was determined by the results of Experiment 1 and was 1.5, 5, 15, 50, 150, 500, 1500, 5000 μg/plate.
Eight test item dose levels per bacterial strain were selected in the second mutation test in order to achieve both a minimum of four non-toxic dose levels and the toxic limit of the test item following the change in test methodology from plate incorporation to pre-incubation.
0.1 mL of the appropriate bacterial strain culture, 0.5 mL of phosphate buffer and 0.1 mL of the test item formulation, solvent vehicle or 0.1 mL of appropriate positive control were incubated at 37 ± 3 °C for 20 minutes (with shaking) prior to addition of 2 mL of molten, trace amino-acid supplemented media and subsequent plating onto Vogel-Bonner plates. Negative (untreated) controls were also performed on the same day as the mutation test employing the plate incorporation method. All testing for this experiment was performed in triplicate.
With metabolic activation, the procedure was the same except that following the addition of the test item formulation and bacterial strain culture, 0.5 mL of S9-mix was added to the tube instead of phosphate buffer, prior to incubation at 37 ± 3 °C for 20 minutes (with shaking) and addition of molten, trace amino-acid supplemented media. All testing for this experiment was performed in triplicate. - Rationale for test conditions:
- In accordance with the OECD TG 471.
- Evaluation criteria:
- There are several criteria for determining a positive result. Any, one, or all of the following can be used to determine the overall result of the study:
1. A dose-related increase in mutant frequency over the dose range tested (De Serres and Shelby, 1979).
2. A reproducible increase at one or more concentrations.
3. Biological relevance against in-house historical control ranges.
4. Statistical analysis of data as determined by UKEMS (Mahon et al., 1989).
5. Fold increase greater than two times the concurrent solvent control for any tester strain (especially if accompanied by an out-of-historical range response (Cariello and Piegorsch, 1996)).
A test item will be considered non-mutagenic (negative) in the test system if the above criteria are not met.
Although most experiments will give clear positive or negative results, in some instances the data generated will prohibit making a definite judgment about test item activity. Results of this type will be reported as equivocal. - Statistics:
- Statistical significance was confirmed by using Dunnetts Regression Analysis (* = p < 0.05) for those values that indicate statistically significant increases in the frequency of revertant colonies compared to the concurrent solvent control. Values that the program concluded as statistically significant but were within the in-house historical profile were not reported.
Results and discussion
Test resultsopen allclose all
- Key result
- Species / strain:
- S. typhimurium TA 100
- Metabolic activation:
- with and without
- Genotoxicity:
- negative
- Cytotoxicity / choice of top concentrations:
- no cytotoxicity
- Vehicle controls validity:
- valid
- Untreated negative controls validity:
- valid
- Positive controls validity:
- valid
- Key result
- Species / strain:
- S. typhimurium TA 1535
- Metabolic activation:
- with and without
- Genotoxicity:
- negative
- Cytotoxicity / choice of top concentrations:
- no cytotoxicity
- Vehicle controls validity:
- valid
- Untreated negative controls validity:
- valid
- Positive controls validity:
- valid
- Key result
- Species / strain:
- E. coli WP2 uvr A
- Metabolic activation:
- with and without
- Genotoxicity:
- negative
- Cytotoxicity / choice of top concentrations:
- no cytotoxicity
- Vehicle controls validity:
- valid
- Untreated negative controls validity:
- valid
- Positive controls validity:
- valid
- Key result
- Species / strain:
- S. typhimurium TA 98
- Metabolic activation:
- with and without
- Genotoxicity:
- negative
- Cytotoxicity / choice of top concentrations:
- no cytotoxicity
- Vehicle controls validity:
- valid
- Untreated negative controls validity:
- valid
- Positive controls validity:
- valid
- Key result
- Species / strain:
- S. typhimurium TA 1537
- Metabolic activation:
- with and without
- Genotoxicity:
- negative
- Cytotoxicity / choice of top concentrations:
- no cytotoxicity
- Vehicle controls validity:
- valid
- Untreated negative controls validity:
- valid
- Positive controls validity:
- valid
Applicant's summary and conclusion
- Conclusions:
- There was no dose-related statistically significant increase in number of revertants outside historical data in both experiments. It was concluded that Trans-hex-2-en-1-ol was not mutagenic under the conditions of the test.
- Executive summary:
The capacity of Trans-hex-2-en-1-ol to induce gene mutation in bacteria was evaluated during a GLP-compliant study performed in accordance with the OECD Testing Guideline 471.
Bacterial strains were Salmonella typhimurium TA1537, TA98, TA1535 and TA100, and Escherichia coli WP2uvrA. Experiments were performed with and without metabolic activation using S9-mix.
Dimethyl sulphoxide was selected as a vehicle and used for negative control, giving counts of revertant colonies within the normal range. Relevant positive controls were selected for each bacteria strains in accordance with the OECD Testing Guideline 471 and induced marked increases in the frequency of revertant colonies, both with or without metabolic activation. Therefore all the controls were considered as valid.
Plate incorporation method (experiment 1) and pre-incubation method (experiment 2) were used. The maximum dose level of the test item was 5,000 μg/plate in both experiments.
In experiment 1 the test item induced toxicity as weakened bacterial background lawns and/or substantial reductions in the revertant colony frequency of all of the Salmonella strains in both the presence and absence of S9-mix at 5,000 μg/plate. No toxicity was noted to Escherichia coli strain WP2uvrAin either the absence or presence of S9-mix at any test item dose level.
In experiment 2 the test item again induced a toxic response with weakened bacterial background lawns noted to all of the Salmonella strains dosed in the absence of S9-mix at 5,000 μg/plate and to all of the tester strains at the same dose concentration in the presence of S9-mix. No toxicity was noted to Escherichia coli strain WP2uvrAdosed in the absence of S9-mix at any test item dose level.
There were no increases in the frequency of revertant colonies recorded for any of the bacterial strains, with any dose of the test item, either with or without metabolic activation (S9-mix) in Experiment 1 (plate incorporation method). Similarly, no toxicologically meaningful increases in the frequency of revertant colonies were recorded for any of the bacterial strains, with any dose of the test item, either with or without metabolic activation (S9-mix) in Experiment 2 (pre-incubation method). Small, statistically significant increases in TA1535 revertant colony frequency were observed in the presence of S9-mix at 1500 μg/plate in the second mutation test. However, these responses were within the in-house historical vehicle/untreated control values for the bacterial strain and were, therefore, considered of no biological relevance.
It is therefore concluded thatTrans-hex-2-en-1-ol was not mutagenic under the conditions of the test.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.
