Registration Dossier
Registration Dossier
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 815-461-0 | CAS number: -
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data

Boiling point
Administrative data
Link to relevant study record(s)
- Endpoint:
- boiling point
- Type of information:
- experimental study
- Adequacy of study:
- key study
- Study period:
- 28 October 2002
- Reliability:
- 1 (reliable without restriction)
- Rationale for reliability incl. deficiencies:
- other: Study performed in accordance with OECD & EU test guidelines in compliance with GLP.
- Qualifier:
- according to guideline
- Guideline:
- OECD Guideline 103 (Boiling point/boiling range)
- Deviations:
- not specified
- Qualifier:
- according to guideline
- Guideline:
- EU Method A.2 (Boiling Temperature)
- Deviations:
- not specified
- GLP compliance:
- yes
- Type of method:
- differential scanning calorimetry
- Key result
- Decomposition:
- yes
- Decomp. temp.:
- > 300 - < 400 °C
- Remarks on result:
- other: No boiling point due to decomposition of the test substance
- Conclusions:
- Boiling of the test substance was not observed.
- Executive summary:
Guidelines: The study procedure used for the determination of the boiling temperature of HATCOL 3331 was based on the following guidelines: European Economic Community (EEC), EEC-Directive 92/69 EEC, Part A, Methods for the determination of physico-chemical properties, A.2 "Boiling temperature", EEC Publication No. L383, December 1992. Organization for Economic Co-operation and Development (OECD), OECD guidelines for testing of Chemicals, guideline no. 103: "Boiling point", July 27, 1995.
Experiments: Both the test substance and an inert reference were heated in a differential scanning calorimeter (DSC). The difference between the heal flow to the sample and the heat flow to the reference was recorded. Four experiments were performed. The results of all experiments were combined for the conclusion.
Conclusion: Boiling of the test substance was not observed. Only some small heat effects were observed, which probably indicate a combination of small endothermic (above about 117°C, 390 K; possibly caused byevaporation of small amounts of volatile impurities) and exothermic (above about 175°C, 448 K; possibly caused by reaction or decomposition of the test substance) effects. Visual indication for reaction or decomposition, i.e. change of the colour of the test substance, was observed on heating the test substance up to 400°C (673 K), but was not observed on heating up to 300°C (573 K).
- Endpoint:
- boiling point
- Type of information:
- experimental study
- Adequacy of study:
- key study
- Study period:
- 01 November 2002
- Reliability:
- 1 (reliable without restriction)
- Rationale for reliability incl. deficiencies:
- other: Study performed in accordance with OECD & EU test guidelines in compliance with GLP.
- Qualifier:
- according to guideline
- Guideline:
- OECD Guideline 103 (Boiling point/boiling range)
- Deviations:
- not specified
- Qualifier:
- according to guideline
- Guideline:
- EU Method A.2 (Boiling Temperature)
- Deviations:
- not specified
- GLP compliance:
- yes
- Type of method:
- differential scanning calorimetry
- Key result
- Atm. press.:
- 101.325 kPa
- Decomposition:
- yes
- Decomp. temp.:
- > 175 °C
- Remarks on result:
- other: Boilng of the test substance was not observed as reaction or decompositon of the test substance was observed.
- Conclusions:
- Boiling of the test substance was not observed. Reaction or decomposition of the test substance was observed above 360°C (633 K). There is some indication that reaction or decomposition started already at approximately 175°C (448 K).
- Executive summary:
The study procedure used for the determination of the boiling temperature of HATCOL 3344 was based on the following guidelines:
European Economic Community (EEC), EEC-Directive 92169 EEC, Part A, Methods for the determination of physico-chemical properties, A.2 "Boiling temperature", EEC Publication No. L3B3, December 1992.
Organization for Economic Co-operation and Development (OECD), OECD guidelines fortesting of Chemicals, guideline no.103: “Boiling point”, July 27,1995.
Experiments:
Both the test substance and an inert reference were heated in a differential scanning calorimeter (DSC). The difference between the heat flow to the sample and the heat flow to the reference was recorded. Three experiments were performed. The results of all experiments were combined for the conclusion.
Conclusion:
Boiling of the test substance was not observed. Reaction or decomposition of the test substance was observed above 360°C (633 K). There is some indication that reaction or decomposition started already at approximately 175°C (448 K).
- Endpoint:
- boiling point
- Type of information:
- experimental study
- Adequacy of study:
- key study
- Study period:
- 31 October 2002
- Reliability:
- 1 (reliable without restriction)
- Rationale for reliability incl. deficiencies:
- other: Study performed in accordance with OECD & EU test guideline in compliance with GLP.
- Qualifier:
- according to guideline
- Guideline:
- OECD Guideline 103 (Boiling point/boiling range)
- Deviations:
- not specified
- Qualifier:
- according to guideline
- Guideline:
- EU Method A.2 (Boiling Temperature)
- Deviations:
- not specified
- GLP compliance:
- yes
- Type of method:
- differential scanning calorimetry
- Key result
- Decomposition:
- yes
- Decomp. temp.:
- > 375 - < 400 °C
- Remarks on result:
- other: Atm. pressure not specified in the study report. Boiling pt of the test substance was not observed.
- Conclusions:
- Boilng of the test substance was not observed.
- Executive summary:
Guidelines:The study procedure used for the determination of the boiling temperature of HATCOL 5236 was based on the following guidelines: European Economic Community (EEC), EEC-Directive 92/69 EEC, Part A, Methods for the determination of physico-chemical properties, A.2 "Boiling temperature", EEC Publication No. L383, December 1992. Organization for Economic Co-operation and Development (OECD), OECD guidelines for testing of Chemicals, guideline no. 103: "Boiling point, July 27, 1995.
Experiments: Both the test substance and an inert reference were heated in a differential scanning calorimeter (DSC). The difference between the heat flow to the sample and the heat flow to the reference was recorded. Three experiments were performed. The results of all experiments were combined for the conclusion.
Conclusion: Boiling of the test substance was not observed. Only some small heat effects were observed, which probably indicate a combination of small endothermic (above about 125°C. 398 K; possibly caused by evaporation of small amounts of volatile impurities) and exothermic (above about 180°C, 453 K; possibly caused by reaction or decomposition of the test substance) effects. A larger exothermic effect was observed above about 350°C - 355°C (623 K - 628 K). Visual indication for reaction or decomposition, i.e. change of the colour of the test substance was observed on heating the test substance up to 400°C (673 K), but was not observed on heating up to 375°C (648 K).
- Endpoint:
- boiling point
- Type of information:
- experimental study
- Adequacy of study:
- key study
- Study period:
- 08 July 2010- 30 July 2010
- Reliability:
- 1 (reliable without restriction)
- Rationale for reliability incl. deficiencies:
- other: This study has been performed according to OECD and EC guidelines and according to GLP principles.
- Qualifier:
- according to guideline
- Guideline:
- OECD Guideline 103 (Boiling point/boiling range)
- Deviations:
- no
- Qualifier:
- according to guideline
- Guideline:
- EU Method A.2 (Boiling Temperature)
- Deviations:
- no
- GLP compliance:
- yes (incl. QA statement)
- Type of method:
- differential scanning calorimetry
- Key result
- Boiling pt.:
- 417 °C
- Atm. press.:
- ca. 1 017 hPa
- Decomposition:
- yes
- Conclusions:
- The boiling temperature of Decanoic acid, mixed esters with heptanoic acid, octanoic acid and trimethylolpropane was determined using DSC. The boiling temperature of the test substance is 417 °C. The atmospheric pressure was 1017 ± 2 hPa.
Referenceopen allclose all
Experiments:
First experiment (25°C - 400°C): The curve showed no endothermic effect that can be ascribed to boiling. Only some small effects were observed that probably are combinations of endothermic effects which are possibly caused by evaporation of small amounts of test substance (possibly volatile impurities) and small exothermic effects which are probably caused by reaction or decomposition of the test substance. After the experiment the sample had a slightly yellow colour (the test substance was originally colourless). The sample had lost 8% of its mass during the experiment.
Second experiment (25°C - 200°C): No endothermic effect that can be ascribed to boiling was observed. Possibly a very small endothermic effect started at about 117°C. This effect may be caused by evaporation of a small amount of volatile impurities. Above about 175°C the effect changed to slightly exothermic. The exothermic effect may be caused by reaction or decomposition. However, the appearance of the sample had not changed during the experiment. No significant mass change was observed.
Third experiment (25°C - 300°C): No endothermic effect that can be ascribed to boiling was observed. Possibly a very small endothermic effect started at about 118°C. This effect may be caused by evaporation of a smallamount ofvolatile impurities. Above about 176°C this effect changed to a slightly exothermic effect. The small exothermic effect may be caused by reaction or decomposition. The appearance of the sample had not changed during the experiment. The sample had lost 1% ofits mass.
Fourth experiment (25°C - 400°C): The characteristics of the recorded curve are equal to those of the previously measured curves. After the experiment the sample had a slightly yellow colour. The sample had lost 11 % of its mass during the experiment.
Conclusion: Boiling of the test substance was not observed. Only some small heat effects were observed, which probably indicate a combination of small endothermic (above about 117°C, 390 K; possibly caused by evaporation of small amounts of volatile impurities) and exothermic (aboveabout 175°C, 448 K; possibly caused by reactionor decomposition of the test substance) effects. Visual indication for reaction or decomposition, i.e. change of the colour of the test substance, was observed on heating the test substance up to 400°C (673 K), but was not observed on heating up to 300°C (573 K).
Experiments:
First experiment (25°C - 395°C): The curve showed an exothermic effect at temperatures above about 180°C. A larger exothermic effect was observed above 360°C. The exothermic effects are probably caused by reaction or decomposition of the test substance. After the experiment the sample had a light yellow colour (the test substance was originally colourless). The change of the colour also indicates that the sample had reacted or decomposed. The sample had lost 8% of its mass.
Second experiment (25°C - 300°C): No endothermic effect that can be ascribed to boiling was observed. Above about 177°C an exothermic effect was observed, which Is probably caused by reaction or decomposition. However, the visual appearance of the test substance had not changed during the experiment. The sample had lost 1 % of its mass.
Third experiment (25°C - 395°C): No endothermic effect that can be ascribed to boiling was observed. Above about 170°C an exothermic effect was observed. A larger exothermic effect was observed above about 360°C. The exothermic effects are probably caused by reaction or decomposition. After the experiment the sample had a light yellow colour (the test substance was originally colourless). The change of the colour also indicates that the sample had reacted or decomposed. The sample had lost 6% of its mass.
Experiments:
First experiment (25°C - 232°C): The curve showed an exothermic effect at temperatures above about 180°C. This effect is possibly caused by reaction or decomposition of the test substance. However, after the experiment the visual appearance of the sample was unchanged (the test substance was originally colourless). No significant mass loss was observed.
Second experiment (25°C - 400°C): No endothermic effect that can be ascribed to boiling was observed. Possibly a very small endothermic effect started at about 125°C. This effect may be caused by evaporation of a small amount of volatile impurities. Above about 182°C the effect changed to slightly exothermic. The exothermic effect may be caused by reaction or decomposition. Above 355°C a larger exothermic effect was observed. This effect is probably caused by reaction or decomposition of the test substance. After the experiment the sample had a light yellow colour (original: colourless), which also indicates that the sample had reacted or decomposed. The sample had lost 8% of its mass.
Third experiment (25°C - 375°C): No endothermic effect that can be ascribed to boiling was observed. Possibly a very small endothermic effect started at about 125°C. This effect may be caused by evaporation of a small amount of volatile impurities. Above about 185°C the effect changed to slightly exothermic. The exothermic effect may be caused by reaction or decomposition. Above 350°C a larger exothermic effect was observed. This effect is probably caused by reaction or decomposition ofthe test substance. However, contrary to the observation after the second experiment, now the appearance of the sample had not changed. The sample had lost 4% of its mass.
Results
Preliminary test
From 375°C upwards the weight of the sample decreased significantly. At 428°C the sample weight had decreased by 25%.
After the experiment a small brown residue remained in the sample container.
Main study
During cooling as well as during heating, no effects were observed which were caused by crystallisation and/or melting. Between 350°C and 475°C an endothermic peak was observed which was due to boiling of the test substance. The extrapolated onset was determined to be 417.15°C.
During the second experiment the endothermic boiling peak was observed with an extrapolated onset of 417.44°C.
Additionally, the test substance was stored
overnight in a -20°C freezer in order to determine if crystallization
occurs. After storage the test substance had not been crystallized. From
this it was concluded that the melting temperature is < -20°C
(253K).
Description of key information
Key value determined by experiment in accordance with OECD guideline 103 and EU test standard A2.
Boiling point could not be determined due to decomposition of the test substance.
Key value for chemical safety assessment
- Boiling point at 101 325 Pa:
- 417 °C
Additional information
HATCOL 3331
Both the test substance and an inert reference were heated in a differential scanning calorimeter (DSC). The difference between the heal flow to the sample and the heat flow to the reference was recorded. Four experiments were performed. The results of all experiments were combined for the conclusion.
Conclusion: Boiling of the test substance was not observed. Only some small heat effects were observed, which probably indicate a combination of small endothermic (above about 117°C, 390 K; possibly caused by evaporation of small amounts of volatile impurities) and exothermic (above about 175°C, 448 K; possibly caused by reaction or decomposition of the test substance) effects. Visual indication for reaction or decomposition, i.e. change of the colour of the test substance, was observed on heating the test substance up to 400°C (673 K), but was not observed on heating up to 300°C (573 K).
HATCOL 3344
Both the test substance and an inert reference were heated in a differential scanning calorimeter (DSC). The difference between the heat flow to the sample and the heat flow to the reference was recorded. Three experiments were performed. The results of all experiments were combined for the conclusion.
Conclusion: Boiling of the test substance was not observed. Reaction or decomposition of the test substance was observed above 360°C (633 K). There is some indication that reaction or decomposition started already at approximately 175°C (448 K).
HATCOL 5236
Both the test substance and an inert reference were heated in a differential scanning calorimeter (DSC). The difference between the heat flow to the sample and the heat flow to the reference was recorded. Three experiments were performed. The results of all experiments were combined for the conclusion.
Conclusion: Boiling of the test substance was not observed. Only some small heat effects were observed, which probably indicate a combination of small endothermic (above about 125°C. 398 K; possibly caused by evaporation of small amounts of volatile impurities) and exothermic (above about 180°C, 453 K; possibly caused by reaction or decomposition of the test substance) effects. A larger exothermic effect was observed above about 350°C - 355°C (623 K - 628 K). Visual indication for reaction or decomposition, i.e. change of the colour of the test substance was observed on heating the test substance up to 400°C (673 K), but was not observed on heating up to 375°C (648 K).
HATCOL 1510
The boiling temperature of Decanoic acid, mixed esters with heptanoic acid, octanoic acid and trimethylolpropane was determined using DSC. The boiling temperature of the test substance is 417 °C. The atmospheric pressure was 1017 ± 2 hPa.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.
