Registration Dossier
Registration Dossier
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 701-160-0 | CAS number: -
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data

Exposure related observations in humans: other data
Administrative data
- Endpoint:
- exposure-related observations in humans: other data
- Type of information:
- experimental study
- Adequacy of study:
- other information
- Reliability:
- 2 (reliable with restrictions)
- Rationale for reliability incl. deficiencies:
- other: Study well documented, meets generally accepted scientific principles, acceptable for assessment
Data source
Reference
- Reference Type:
- publication
- Title:
- Immunomodulatory properties of multi-walled carbon nanotubes in peripheral blood mononuclear cells from healthy subjects and allergic patients
- Author:
- Laverny G, Casset A, Purohit A, Schaeffer E, Spiegelhalter C, de Blay F, Pons F
- Year:
- 2 013
- Bibliographic source:
- Toxicol Lett., 217(2):91-101
Materials and methods
- Endpoint addressed:
- immunotoxicity
- Principles of method if other than guideline:
- Investigation of the immunomodulatory activity in peripheral blood mononuclear cells (PBMCs) from healthy donors and mite-allergic subjects.
- GLP compliance:
- no
Test material
- Reference substance name:
- GRAPHISTRENGTH C100
- IUPAC Name:
- GRAPHISTRENGTH C100
- Reference substance name:
- Tangled Multi-Walled Carbon Nanotubes
- EC Number:
- 701-160-0
- Cas Number:
- 7782-42-5
- Molecular formula:
- Hollow tubular carbon, 1-dimensional nano structures with hexagonal arrangement of carbon atoms
- IUPAC Name:
- Tangled Multi-Walled Carbon Nanotubes
- Test material form:
- solid: nanoform
Constituent 1
Constituent 2
Method
- Ethical approval:
- confirmed and informed consent free of coercion received
- Details on study design:
- PBMCs from healthy donors and mite-allergie subjects were stimulated wlth Toll-like receptor (TLR) agonists, a T cell mitogen and/or a specific allergen to characterize the potency of MWCNTs to modulate innate and adaptive Immune response. Mixed lymphocyte reactions (MLRs) were performed with allogeneic PBMCs from healthy donors to further study the impact of MWCNTs on T cell activation. As well, differentiation, maturation and function of monocyte-derived dendritic cells (MDDCs) were assessed in the presence or absence of MWCNTs, to provlde information on whether MWCNTs preferentially target antigen-presenting cells (APCs).
Results and discussion
Applicant's summary and conclusion
- Executive summary:
The immunomodulatory activity of Graphistrength C100 was investigated in peripheral blood mononuclear cells (PBMCs) from healthy donors and mite-allergic subjects. Freshly prepared PBMCs, stimulated or not with Toll-like receptor (TLR)1-9 agonists, a T cell mitogen (phytohemagglutinin A) or mite allergen extract were cultured in the presence or absence of MWCNTs. Secretion of TNF-a, IL-2, IL-5, IL-6, IL-12/23p40 or IFN-¿was quantified in the culture supernatants by ELISA. Basal secretion of all the cytokines was not altered by MWCNTs in PBMCs from both healthy donors and allergic subjects. In PBMCs from healthy donors, TNF-a, IL-6 and IL-12/23p40 secretion in response to the TLR4 agonist, lipopolysaccharide was however increased in a dose-dependent manner by MWCNTs. Significant increases in the release of these cytokines were also observed in PBMCs stimulated with a TLR2 or TLR3 agonist. MWCNTs also increased the release of IL-2 and IFN-¿by PBMCs stimulated with a T cell mitogen. In contrast, MWCNTs inhibited allergen-induced IL-5 secretion by PBMCs from mite-allergic subjects. As well, MWCNTs altered the capacity of PBMC-derived monocytes to differentiate into functional dendritic cells. All together, these data suggest that according to its immune cell target, MWCNTs may either promote or suppress immune responses in humans. Further investigations are necessary to fully understand the complexity behind interactions of engineered nanoparticles with the immune system.
According to the available data, no translocation ofGraphistrength C100 to the circulating blood is expected after an inhalation exposure. Therefore this potential effect on the peripheral blood mononuclear cells observed in these in vitro conditions is not expected to occur in vivo.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.
