Registration Dossier
Registration Dossier
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 947-726-2 | CAS number: -
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data

Adsorption / desorption
Administrative data
Link to relevant study record(s)
- Endpoint:
- adsorption / desorption
- Remarks:
- adsorption
- Type of information:
- read-across from supporting substance (structural analogue or surrogate)
- Adequacy of study:
- key study
- Justification for type of information:
- REPORTING FORMAT FOR THE ANALOGUE APPROACH
1. HYPOTHESIS FOR THE ANALOGUE APPROACH
This read-across is based on the hypothesis that source and target substances have similar toxicological properties because
• they are manufactured from similar or identical precursors under similar conditions
• they share structural similarities with common functional groups: quaternary ammonium and saturated or unsaturated alkyl chains with comparable length (corresponding to scenario 2 of the read-across assessment framework)
The read-across hypothesis is based on structural similarity of target and source substances. Based on available experimental data, including key physicochemical properties and data from acute toxicity, irritation, sensitization (human) and genotoxicity studies, the read-across strategy is supported by a quite similar toxicological profile of all substances.
Therefore, read-across from the existing ecotoxicity, environmental fate and toxicity studies conducted with the source substances is considered as an appropriate adaptation to the standard information requirements of the REACH Regulation for the target substance, in accordance with the provisions of Annex XI, 1.5 of the REACH Regulation.
A justification for read-across is attached to IUCLID section 13.
2. SOURCE AND TARGET CHEMICAL(S) (INCLUDING INFORMATION ON PURITY AND IMPURITIES)
See justification for read-across attached to IUCLID section 13.
3. ANALOGUE APPROACH JUSTIFICATION
See justification for read-across attached to IUCLID section 13.
4. DATA MATRIX
See justification for read-across attached to IUCLID section 13. - Reason / purpose for cross-reference:
- read-across source
- Reason / purpose for cross-reference:
- read-across source
- Reason / purpose for cross-reference:
- read-across: supporting information
- Media:
- sediment
- Phase system:
- solids-water in soil
- Type:
- Kp
- Value:
- 10 000 L/kg
- Phase system:
- solids-water in sediment
- Type:
- Kp
- Value:
- 10 000 L/kg
- Phase system:
- solids-water in suspended matter
- Type:
- Kp
- Value:
- 16 800 L/kg
- Transformation products:
- not specified
- Details on results (Batch equilibrium method):
- Adsorption of long-chain QAC’s to EPA and river sediments was extensive relative to other organic chemicals such as polyaromatic hydrocarbons, substituted polycyclic compounds, and different detergent chemicals (Table 2). Equilibrium adsorption coefficients (Kd) for the three QAC’s tested were considerably higher than values for the other chemicals surveyed, with the relative strength of binding decreasing in the order STAC>CTAB>DSDMAC. Adsorption coefficients for the strongest binding QAC (STAC) to river sediments were comparable to values determined for raw wastewater solids and activated sludge and desorption experiments indicated that strong binding of this material occurred to both organic and inorganic particulate matter. Kinetic studies also indicated that adsorption was rapid, reaching equilibrium values within a few hours. In general, the QAC’s that were tested had a high affinity for particulate matter and were capable of strongly binding to a variety of environmentally relevant sorbents.
- Statistics:
- No details given
- Validity criteria fulfilled:
- not specified
- Conclusions:
- In the following exposure assessment, a value of 10,000 l/kg dw is chosen for both Kpsed and Kpsoil.
With an assumed Kpsusp of 10,000 l/kg and a concentration of 15 mg suspended matter per litre river water, about 87% of the DHTDMAC would remain in the water phase. In river water on average 27% of the DHTDMAC is adsorbed onto suspended matter (average concentration 22 mg/l). From these values, the Kpsusp is calculated to 16,800 l/kg. As the latter value has a better empirical basis, it is used in the exposure calculation.
Reference
Description of key information
Key value for chemical safety assessment
- Koc at 20 °C:
- 10 000
Other adsorption coefficients
- Type:
- log Kp (solids-water in soil)
- Value in L/kg:
- 4
- at the temperature of:
- 20 °C
Other adsorption coefficients
- Type:
- log Kp (solids-water in sediment)
- Value in L/kg:
- 4
- at the temperature of:
- 20 °C
Other adsorption coefficients
- Type:
- log Kp (solids-water in suspended matter)
- Value in L/kg:
- 4.22
- at the temperature of:
- 20 °C
Other adsorption coefficients
- Type:
- log Kp (solids-water in raw sewage sludge)
- Value in L/kg:
- 2.48
- at the temperature of:
- 20 °C
Other adsorption coefficients
- Type:
- log Kp (solids-water in settled sewage sludge)
- Value in L/kg:
- 2.48
- at the temperature of:
- 20 °C
Other adsorption coefficients
- Type:
- log Kp (solids-water in activated sewage sludge)
- Value in L/kg:
- 2.48
- at the temperature of:
- 20 °C
Other adsorption coefficients
- Type:
- log Kp (solids-water in effluent sewage sludge)
- Value in L/kg:
- 2.48
- at the temperature of:
- 20 °C
Additional information
No experimental data are available for the target substance Di-C12-18 alkyldimethyl ammonium chloride. Based on structural similarities, a read-across from DODMAC and DHTDMAC is considered to be appropriate. A justification for read-across is attached to IUCLDI section 13.
Adsorption of quaternary ammonium compounds seems (QAC) to occur mainly by an ion-exchange mechanism and depends on cation-exchange capacity of the sorbent and variety of other parameters. An estimation of Koc using using EpiSuite v4.11, KOCWIN v2.00 is not reliable, since the training set for the Koc estimation of this program did not include any QACs. Therefore, the Koc estimate is outside the program's prediction domain.
DHTDMAC adsorbs onto both the mineral and the organic fraction of soil and sediments. Kappeler (1982) found that on average 27% of the DHTDMAC in river water is adsorbed onto suspended matter (mean 22 mg/L suspended solids). The Kpsusp is calculated to 16,800 L/kg from these values.
This demonstrates that DHTDMAC can be bound very strongly by some minerals, while in others relatively small distribution constants were estimated. Under environmental conditions, the sorption properties of DHTDMAC probably vary in a wide range depending on the nature of the adsorbant.
For exposure assessment purpose, a value of 10,000 L/kg dw is chosen for both Kpsed and Kpsoil.
With an assumed Kpsusp of 10,000 l/kg and a concentration of 15 mg suspended matter per litre river water, about 87% of the DHTDMAC would remain in the water phase. Kappeler (1982) found that in river water on average 27% of the DHTDMAC is adsorbed onto suspended matter (average concentration 22 mg/L). From these values, the Kpsusp is calculated to 16,800 L/kg. As the latter value has a better empirical basis, it is used in the exposure calculation.
[LogKoc: 4.0]
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.

EU Privacy Disclaimer
This website uses cookies to ensure you get the best experience on our websites.