Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 947-726-2 | CAS number: -
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Biodegradation in soil
Administrative data
Link to relevant study record(s)
Description of key information
Key value for chemical safety assessment
- Half-life in soil:
- 500 d
- at the temperature of:
- 12 °C
Additional information
The ultimate biodegradation of Di-C12-18 alkyldimethyl ammonium chloride is predicted to be low based on results obtained with the structurally related substance DODMAC.
Degradation in soil
"Degradation of 14C-DSDMAC in sandy loam and loam mixed with digested sewage sludge was measured with a batch incubated flask method (Fieler, 1975a, cited in ECETOC 1993). The 14CO2-production was approximately 48% after 55 weeks in both soils, when 50 mg DSDMAC per kg dry soil were applied. Addition of 30 mg/l LAS reduced the result to 38%. Degradation of 0.5 mg DSDMAC/kg dry soil was measured in a loam amended with or without digested sewage sludge and two other soils. The 14CO2-production after 62 weeks was as follows: ca. 27% in sandy loam and loam with sludge; ca. 18% in loam without sludge and silt loam. At concentrations of 5 and 50 mg/kg DSDMAC degradation increased in all soils with highest results of 50 and 63% in sludge amended soils.
Degradation of DSDMAC in soils over a long period of 116 days was reported also from other tests (Weston, 1987, cited in ECETOC 1993). 0.1 mg DSDMAC/kg dry soil were degraded to 18-27% based on 14CO2-production and at 1.0 mg/kg degradation was 34-38%.
A comparable degradation test with DHTDMAC lasted 120 days (Weston, 1989, cited in ECETOC 1993). In sandy loam with sludge 0.1 mg DHTDMAC/kg dry soil showed 36 and 52% 14CO2-production. Corresponding values of 38 and 41% were derived with 1.0 mg/kg under the same conditions.
Procter & Gamble (1992, cited in ECETOC, 1993) performed various studies on the biological degradation of DSDMAC in soils using several types of dispersion of the substance. Aqueous dispersion resulted in about 35% 14CO2-production after a mean test period of 118 days. The mean degradation of a solution with a solvent was below 15% after a mean test period of 184 days. In these cases the majority of the test results was obtained between 130 and 169 days test duration where the 14CO2-production was less than 10%. Results with lecithin emulsions were in
between.
In a 72-day study no degradation of 14C-DHTDMAC could be observed under anaerobic conditions (Fieler, 1975b, cited in ECETOC 1993). About 90-95% of the test substance (20, 200 and 1500 mg/l) were adsorbed to particles. Solids concentration in the digester was 30 g/l. No other study could find any evidence that DHTDMAC undergoes anaerobic degradation.
Biodegradation studies performed in soil indicated that 18-60% mineralisation was observed within 120-430 days. As a first approach, a half-life of 500 days is used for the terrestrial exposure assessment (kbiosoil = 1.4 . 10-3 d-1)." (EU RAR, 2002)
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.