Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 686-241-8 | CAS number: 81058-27-7
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Eye irritation
Administrative data
- Endpoint:
- eye irritation: in vitro / ex vivo
- Type of information:
- experimental study
- Adequacy of study:
- key study
- Study period:
- From 2016-08-01 to 2016-08-02
- Reliability:
- 1 (reliable without restriction)
- Rationale for reliability incl. deficiencies:
- guideline study
- Remarks:
- Well documented GLP study according to OECD guideline 437.
Data source
Reference
- Reference Type:
- study report
- Title:
- Unnamed
- Year:
- 2 016
- Report date:
- 2016
Materials and methods
Test guideline
- Qualifier:
- according to guideline
- Guideline:
- OECD Guideline 437 (Bovine Corneal Opacity and Permeability Test Method for Identifying i) Chemicals Inducing Serious Eye Damage and ii) Chemicals Not Requiring Classification for Eye Irritation or Serious Eye Damage)
- Deviations:
- no
- Principles of method if other than guideline:
- The study procedures were also in compliance with the following guidelines:
- European Community (EC). Commission regulation (EC) No. 440/2008, Part B: Methods for the Determination of Toxicity and other health effects, Guideline B.47
“Bovine corneal opacity and permeability method for identifying ocular corrosives and severe irritants ". Official Journal of the European Union No. L324; Amended by EC No. 1152/2010 No. L142, 09 December 2010.
- The Ocular Toxicity Working Group (OTWG) of the Interagency Coordinating Committee on the Validation of Alternative Methods (ICCVAM) and the National Interagency Centre for the Evaluation of Alternative Toxicological Methods (NICEATM), Background Review Document (BRD): current status of in vitro test methods for identifying ocular corrosives and severe irritants: The Bovine Corneal Opacity and Permeability (BCOP) Test Method, March 2006.
- In Vitro Techniques in Toxicology Database (INVITTOX) protocol 127. Bovine Opacity and Permeability (BCOP) Assay, 2006.
- Gautheron P, Dukic M, Alix D and Sina J F, Bovine corneal opacity and permeability test: An in vitro assay of ocular irritancy. Fundam Appl Toxicol 18:442-449, 1992. - GLP compliance:
- yes (incl. QA statement)
Test material
- Reference substance name:
- [(2R,3R,4S,5R,6R)-6-bromo-3,4,5-tris[(2,2-dimethylpropanoyl)oxy]oxan-2-yl]methyl 2,2-dimethylpropanoate
- EC Number:
- 686-241-8
- Cas Number:
- 81058-27-7
- Molecular formula:
- C26H43BrO9
- IUPAC Name:
- [(2R,3R,4S,5R,6R)-6-bromo-3,4,5-tris[(2,2-dimethylpropanoyl)oxy]oxan-2-yl]methyl 2,2-dimethylpropanoate
- Test material form:
- solid: crystalline
- Details on test material:
- - Name of test material (as cited in study reports): JNJ-42808389-AAA (T003421)
- Physical state: crystalline powder
- Appearance: white powder
Constituent 1
- Specific details on test material used for the study:
- SOURCE OF TEST MATERIAL
- Source and lot/batch No.of test material: M15KB4494
- Expiration date of the lot/batch: 2016-11-13 (retest date)
- Purity: 100.5%
- Purity test date: no data
STABILITY AND STORAGE CONDITIONS OF TEST MATERIAL
- Storage condition of test material: at room temperature
- Stability under test conditions: no data
- Solubility and stability of the test substance in the solvent/vehicle: Since no workable suspension in physiological saline could be obtained, the test item was used as delivered and added pure on top of the corneas.
TREATMENT OF TEST MATERIAL PRIOR TO TESTING
- Treatment of test material prior to testing: none, the test item was applied undiluted
Test animals / tissue source
- Species:
- other: Freshly isolated bovine cornea
- Strain:
- other: Not applicable
- Details on test animals or tissues and environmental conditions:
- TEST ANIMALS
- Source: Vitelco, -'s Hertogenbosch, The Netherlands
- Bovine eyes from young cattle were obtained from the slaughterhouse, where the eyes were excised by a slaughterhouse employee as soon as possible after slaughter. Eyes were collected and transported in physiological saline in a suitable container under cooled conditions and tested the day of arrival in the laboratory.
Test system
- Vehicle:
- unchanged (no vehicle)
- Controls:
- yes, concurrent positive control
- yes, concurrent negative control
- Amount / concentration applied:
- TEST MATERIAL
- Amount(s) applied (volume or weight with unit): 320 to 339 mg
NEGATIVE CONTROL
- Amount applied: 750 µL
POSITIVE CONTROL
- Amount applied: 750 µL
- Concentration (if solution): 20% (w/v) imidazole solution - Duration of treatment / exposure:
- Corneas were incubated for 240 ± 10 minutes at 32 ± 1°C
- Duration of post- treatment incubation (in vitro):
- After 240 ± 10 minutes of treatment, opacity was measured with an opacitometer. The permeability measurement of the corneas was performed after the incubation period of 90 minutes ± 5 minutes following the opacity measurement.
- Number of animals or in vitro replicates:
- 3 corneas were selected at random for each treatment group
- Details on study design:
- SELECTION AND PREPARATION OF CORNEAS
The eyes were checked for unacceptable defects, such as opacity, scratches, pigmentation and neovascularization by removing them from the physiological saline and holding them in the light. Those exhibiting defects were discarded.
The isolated corneas were stored in a petri dish with cMEM (Eagle’s Minimum Essential Medium (Life Technologies, Bleiswijk, The Netherlands) containing 1% (v/v) L-glutamine (Life Technologies) and 1% (v/v) Foetal Bovine Serum (Life Technologies)). The isolated corneas were mounted in a corneal holder (one cornea per holder) of BASF (Ludwigshafen, Germany with the endothelial side against the O-ring of the posterior half of the holder. The anterior half of the holder was positioned on top of the cornea and tightened with screws. The compartments of the corneal holder were filled with cMEM of 32 ± 1°C. The corneas were incubated for the minimum of 1 hour at 32 ± 1°C.
After the incubation period, the medium was removed from both compartments and replaced with fresh cMEM.
TREATMENT METHOD
The medium from the anterior compartment was removed and 750 µl of the negative control and 20% (w/v) Imidazole solution (positive control) were introduced onto the epithelium of the cornea. The test item was weighed in a bottle and applied directly on the corneas in such a way that the cornea was completely covered (320 to 339 mg mg).The holder was slightly rotated, with the corneas maintained in a horizontal position, to ensure uniform distribution of the solutions over the entire cornea. Corneas were incubated in a horizontal position for 240 ± 10 minutes at 32 ± 1°C.
REMOVAL OF TEST SUBSTANCE
- Number of washing steps after exposure period: After the incubation the solutions and the test item were removed and the epithelium was washed at least three times with MEM with phenol red (Eagle’s Minimum Essential Medium Life Technologies). Possible pH effects of the test item on the corneas were recorded. Each cornea was inspected visually for dissimilar opacity patterns. The medium in the posterior compartment was removed and both compartments were refilled with fresh cMEM and the opacity determinations were performed.
METHODS FOR MEASURED ENDPOINTS
-CORNEAL OPACITY: Opacity determinations will be performed on each of the corneas using an opacitometer (BASF-OP3.0, BASF, Ludwigshafen, Germany). The opacity of each cornea will be read against a cMEM filled chamber, and the initial opacity reading thus determined will be recorded. Corneas that had an initial opacity reading higher than 7 were not used. The opacity of a cornea was measured by the diminution of light passing through the cornea. The light was measured as illuminance (l = luminous flux per area, unit: lux) by a light meter. The opacity value (measured with the device OP-KIT) was calculated according to: opacity = ((I0/I)-0.9894)/0.0251 With I0 the empirically determined illuminance through a cornea holder but with windows and med ium, and I the measured illuminance through a holder with cornea before/after test item treatment. The change of opacity for each individual cornea (including the negative control) was calculated by subtracting the initial opacity reading from the final post-treatment reading. The corrected opacity for each positive control or test item treated cornea was calculated by subtracting the average change in opacity of the negative control corneas from the change in opacity of each positive control or test item treated cornea. The mean opacity value of each treatment group was calculated by averaging t he corrected opacity values of the treated corneas for each treatment group.
- Corneal permeability: passage of sodium fluorescein dye measured with the aid of microtiter plate re ader (OD490) The medium of both compartments (anterior compartment first) was removed. The posterior compa rtment was refilled with fresh cMEM. The anterior compartment was filled with 1 mL of 5 mg Nafluor escein/mL cMEM solution (Sigma-Aldrich Chemie GmbH, Germany). The holders were slightly ro tated, with the corneas maintained in a horizontal position, to ensure uniform distribution of the sodium-fluorescein solution over the entire cornea. Corneas were incubated in a horizontal position for 90 ± 5 minutes at 32 ± 1°C. After the incubation period, the medium in the posterior compartment of each holder was removed and placed into a sampling tube labelled according to holder number. 360 μL of the medium from e ach sampling tube was transferred to a 96-well plate. The optical densi ty at 490 nm (OD490) of each sampling tube was measured in triplicate using a microplate reader (TE CAN Infinite® M200 Pro Plate Reader). Any OD490 that was 1.500 or higher was diluted to bring the OD490 into the acceptable ra nge (linearity up to OD490 of 1.500 was verified before the start of the experiment). OD490 values of less than 1.500 were used in the permeability calculation. The mean OD490 for each treatment was calculated using cMEM corrected OD490 values. If a dilution was performed, the OD490 of each reading was corrected for the mean negative control OD490 before the dilution factor was applied to the readings.
SCORING SYSTEM: In Vitro Irritancy Score (IVIS) The mean opacity and mean permeability values (OD490) were used for each treatment group to c alculate an in vitro score: In vitro irritancy score (IVIS) = mean opacity value + (15 x mean OD490 value)
Additionally the opacity and permeability values were evaluated independently to determine whether the test item induced irritation through only one of the two endpoints.
The IVIS cut-off values for identifying the test items as inducing serious eye damage (UN GHS Category 1) and test items not requiring classification for eye irritation or serious eye damage (UN GHS No Category) are given hereafter:
In vitro score range UN GHS
≤ 3 No Category
> 3; ≤ 55 No prediction can be made
>55 Category 1
Results and discussion
In vitro
Resultsopen allclose all
- Irritation parameter:
- in vitro irritation score
- Remarks:
- mean of 3 eyes
- Run / experiment:
- 1
- Value:
- -0.7
- Vehicle controls validity:
- not applicable
- Negative controls validity:
- valid
- Positive controls validity:
- valid
- Remarks on result:
- other: range of IVIS score of test item:: -1.9 to 0.6
- Irritation parameter:
- cornea opacity score
- Remarks:
- mean of 3 eyes
- Run / experiment:
- 1
- Value:
- -1
- Vehicle controls validity:
- not applicable
- Negative controls validity:
- valid
- Positive controls validity:
- valid
- Remarks on result:
- other: range of corneal opacity score -1.8 to -0.5
- Irritation parameter:
- other: permeability score mean of 3 eyes
- Run / experiment:
- 1
- Value:
- 0.02
- Vehicle controls validity:
- not applicable
- Negative controls validity:
- valid
- Positive controls validity:
- valid
- Remarks on result:
- other: range of permeability value of test item: -0.007 to 0.071
- Other effects / acceptance of results:
- mean in vitro irritancy score (range):
negative control: -0.2 (-0.8 to 0.9)
positive control: 158.7 (140.0 to 187.0)
mean opacity scores (range):
negative control: -0.4 (-1.0 to 0.6)
positive control: 121.5 (107.4 to 149.1)
mean permeability scores (range):
negative control: 0.014 (0.011 to 0.016)
positive control: 2.485 (2.136 to 2.792)
The corneas treated with the positive control were turbid after the 240 minutes of treatment.The corneas treated with the test item showed opacity values ranging from -1.8 to -0.5 and permeability values ranging from -0.007 to 0.071. The corneas were clear after the 240 minutes of treatment with the test item. No pH effect of the test item was observed on the rinsing medium.
Interpretation:
The IVIS of all replicates was within one category.
Acceptance of results
The negative control responses for opacity and permeability were less than the upper limits of the laboratory historical range indicating that the negative control did not induce irritancy on the corneas. The mean in vitro irritancy score of the positive control (20% (w/v) Imidazole) was 159 (140 to 187) and within the historical positive control data range. Furthermore the opacity and permeability values of the positive control were within two standard deviations of the current historical mean. It was therefore concluded that the test conditions were adequate and that the test system functioned properly.
Applicant's summary and conclusion
- Interpretation of results:
- GHS criteria not met
- Conclusions:
- The test item did not induce ocular irritation through both endpoints, resulting in a mean in vitro irritancy score of -0.7 (-1.9 to 0.6) after 240 minutes of treatment. Since the test item induced an IVIS ≤ 3, no classification is required for eye irritation or serious eye damage.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.