Registration Dossier
Registration Dossier
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 947-912-3 | CAS number: -
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data

Eye irritation
Administrative data
- Endpoint:
- eye irritation: in vitro / ex vivo
- Type of information:
- experimental study
- Adequacy of study:
- key study
- Reliability:
- 1 (reliable without restriction)
- Rationale for reliability incl. deficiencies:
- guideline study
Data source
Reference
- Reference Type:
- study report
- Title:
- Unnamed
- Year:
- 2 019
- Report date:
- 2019
Materials and methods
Test guideline
- Qualifier:
- according to guideline
- Guideline:
- OECD Guideline 492 (Reconstructed Human Cornea-like Epithelium (RhCE) Test Method for Identifying Chemicals Not Requiring Classification and Labelling for Eye Irritation or Serious Eye Damage)
- Version / remarks:
- adopted 25 Jun. 2018
- Deviations:
- no
- GLP compliance:
- yes (incl. QA statement)
- Remarks:
- Landesamt für Umwelt, Mainz, Germany
Test material
- Reference substance name:
- 6-[(9Z)-octadec-9-enoyloxy]hexyl (9Z)-octadec-9-enoate; 6-hydroxyhexyl (9Z)-octadec-9-enoate
- EC Number:
- 947-912-3
- Molecular formula:
- Not applicable for UVCB
- IUPAC Name:
- 6-[(9Z)-octadec-9-enoyloxy]hexyl (9Z)-octadec-9-enoate; 6-hydroxyhexyl (9Z)-octadec-9-enoate
1
Test animals / tissue source
- Species:
- human
- Strain:
- other: EpiOcular™
- Details on test animals or tissues and environmental conditions:
- - Justification of the test method and considerations regarding applicability
: Commercially available EpiOcular™ kit
- Description of the cell system used, incl. certificate of authenticity and the mycoplasma status of the cell live: The EpiOcular™ tissues were procured from MatTek In Vitro Life Science Laboratories, Bratislava, Slovakia.
Designation of the kit: OCL-212-EIT
Day of delivery: 23. Jul. 2019
Batch no.: 30618
The EpiOcular™ tissue consists of normal, human-derived keratinocytes which have been cultured to form a stratified squamous epithelium similar to that found in the human cornea. It consists of highly organized basal cells. These cells are not transformed or transfected with genes to induce an extended life span. The EpiOcular™ are cultured in specially prepared cell culture inserts with a porous membrane through which nutrients can pass to the cells. The tissue surface is 0.6 cm2.
The certificate of analysis is included in the study report. No contaminants were detected. Tissue viability and the barrier function tests were within the acceptable ranges and indicated appropriate formation of the mucosal barrier and a viable basal cell layer.
Test system
- Vehicle:
- unchanged (no vehicle)
- Controls:
- yes, concurrent positive control
- yes, concurrent negative control
- Amount / concentration applied:
- TEST MATERIAL
- Amount(s) applied: 50 µL
- Duration of treatment / exposure:
- 28 min at 37 ± 1°C
- Duration of post- treatment incubation (in vitro):
- 120 min at 37 ± 1°C
- Number of animals or in vitro replicates:
- in duplicates for each treatment and control group
- Details on study design:
- - Details of the test procedure used
Preparations
On the day of the start of the experiment, the MTT concentrate was thawed. The MTT concentrate was diluted with assay medium directly before use. The assay medium was warmed in the water bath to 37 ± 1°C. 6-well-plates were labelled with test item, negative control and positive control and filled with 1 mL assay medium in the appropriate wells. All inserts were inspected for viability and the presence of air bubbles between agarose gel and insert. Viable tissues were transferred in the prepared 6-well-plate and incubated at 37 ± 1 °C, 5 ± 1 % CO2 and ≥ 95% relative humidity for 1 h. After the pre-incubation, the medium was replaced and the wells were filled with 1 mL fresh assay medium. All 6-well-plates were incubated at 37 ± 1 °C, 5 ± 1 % CO2 and ≥ 95% relative humidity for 16 hours and 58 minutes.
Exposure and Post-Treatment
After overnight incubation, the tissues were pre-wetted with 20 µL DPBS buffer and then incubated at 37 ± 1 °C, 5 ± 1 % CO2 and ≥ 95% relative humidity for 30 minutes. After that, 50 µL of the controls and the test item were applied in duplicate in one-minute- intervals. This was done in such a fashion that the upper surface of the tissue was covered. At the beginning of each experiment (application of negative controls), a stop watch was started. After dosing the last tissue of each plate, the plate was transferred into the incubator for 28 minutes at 37 ± 1 °C, 5 ± 1 % CO2 and ≥ 95% relative humidity. At the end of the exposure time, the inserts were removed from the plates in one-minute intervals using sterile forceps and rinsed immediately. The inserts were thoroughly rinsed with DPBS. Then, the tissues were immediately transferred to and immersed in 5 mL of pre-warmed assay medium in a pre-labelled 12-well plate for 12 minutes post soak at room temperature. After that, each insert was removed from the medium, the medium was decanted off the tissue and the insert was blotted on absorbent material and transferred into the respective well of a pre-labelled 6-well plate containing 1 mL assay medium. For post-treatment incubation, the tissues were incubated for 120 minutes at 37 ± 1 °C, 5 ± 1 % CO2 and ≥ 95%
relative humidity.
After the post-treatment incubation, the MTT assay was performed.
- Description of the method used to quantify MTT formazan :
A 24-well-plate was prepared with 300 µL freshly prepared MTT solution in each well. The tissue inserts were blotted on absorbent material and then transferred into the MTT solution. The plate was incubated for 180 minutes at 37 ± 1 °C, 5 ± 1 % CO2 and ≥ 95% relative humidity. At last, the test item inserts were thoroughly dried and set into the empty 24-well-plate. Into each well, 2 mL isopropanol were pipetted, taking care to reach the upper rim of the insert. The inserts of the controls were set into a pre-labelled 6-well-plate, containing 2 mL isopropanol, taking care that no isopropanol is flowing into the tissue insert. The plates were firmly sealed to avoid evaporation of the solvent and then stored in the refrigerator overnight. On the next day the plate was shaken for 2 hours at room temperature, protected from light. The inserts of the test item were pierced with an injection needle, taking care that all colour is extracted and the inserts were then discarded.
The inserts of the controls were discarded without piercing the tissues, as they were extracted in a 6-well-plate. The content of each well was thoroughly mixed in order to achieve homogenisation. From each well, two replicates with 200 µL solution (each) were pipetted into a 96-wellplate. Eight wells with 200 µL isopropanol were pipetted also. The plate was read in a plate spectrophotometer (Anthos Reader 2010 Flexi, Anthos Microsysteme GmbH) at 570 nm. The values of the 96-plate-reader were transferred into a validated spreadsheet (Microsoft Excel®).
Calculation
- Calculation of mean OD of the blank isopropanol (ODBlk)
- Subtraction of mean ODBlk of each value of the same experiment (corrected values)
- Calculation of mean OD of the two replicates for each tissue
- Calculation of mean OD of the two relating tissues for controls and test item
To calculate the relative tissue viability, the following equation was used:
% Viability = [(OD corrected of test item or positive control) / (OD corrected of mean negative control)]
- Description of evaluation criteria used including the justification for the selection of the cut-off point for the prediction model :
Eye hazard potential is assessed using the following criteria (according to guideline):
% Viability > 60%: non eye irritant / UN GHS classification: no category
% Viability ≤ 60%: at least eye irritant / UN GHS classification: No prediction can be made (category 1 or 2)
- Reference to historical positive and negative control results demonstrating suitable run acceptance criteria : The values for negative control and for positive control were within the range of historical data of the test facility.
- Complete supporting information for the specific RhCE tissue construct used
- Reference to historical data of the RhCE tissue construct : yes, historical data available and included in the report
- Demonstration of proficiency in performing the test method before routine use by testing of the proficiency chemicals :The validity of the EpiOcular test at LAUS GmbH was demonstrated in a proficiency study. For this purpose, 15 proficiency chemicals (indicated by the OECD 492 guideline) were tested.
- Positive and negative control means and acceptance ranges based on historical data :
Optical density negative control: mean 1.870, SD 0.272, range: 1.167 - 2.437
Relative tissue viability positive control: mean 32.1%, SD 7.3%, range: 12.4 - 57.2%
- Acceptable variability between tissue replicates for positive and negative controls : < 20%
- Acceptable variability between tissue replicates for the test chemical: <20%
Results and discussion
In vitro
Results
- Irritation parameter:
- other: % tissue viability
- Remarks:
- mean value of two tissues (tissue 1 / tissue 2)
- Run / experiment:
- 28 min exposure
- Value:
- 97.5
- Vehicle controls validity:
- not applicable
- Negative controls validity:
- valid
- Positive controls validity:
- valid
- Remarks on result:
- no indication of irritation
- Other effects / acceptance of results:
- OTHER EFFECTS:
- Visible damage on test system: not detected
DEMONSTRATION OF TECHNICAL PROFICIENCY: All of the 15 proficiency chemicals were correctly categorized. Therefore, the proficiency of the EpiOcular test was demonstrated.
ACCEPTANCE OF RESULTS:
- Acceptance criteria met for negative control: yes; Mean OD of negative control found = 2.0
- Acceptance criteria met for positive control: yes ; % mean relative viability of positive control found = 41.2%
- Variation within replicates: negative control 1.7%, positive control 3.3%, test item 6.2%;
The values for negative control, positive control were within the range of historical data of the test facility. Therefore, the experiment is considered valid.
Any other information on results incl. tables
Table 1: Absorbance Values Blank Isopropanol (OD at 570 nm)
Replicate | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | Mean |
Absorbance | 0.033 | 0.034 | 0.034 | 0.033 | 0.034 | 0.034 | 0.034 | 0.035 | 0.034 |
Table 2: Absorbance Values Negative Control, Positive Control and Test Item (OD at 570 nm)
Designa tion |
Measure ment |
Negative Control | Positive Control | Fatty acids, C18- unsaturated, 1,6 Hexanediol Diester |
Tissue 1 | 1 | 2.053 | 0.882 | 2.001 |
2 | 1.973 | 0.868 | 2.016 | |
Tissue 2 | 1 | 1.965 | 0.818 | 1.880 |
2 | 1.996 | 0.802 | 1.892 |
Table 3: Mean Absorbance Negative Control, Positive Control and Test Item (corrected with mean absorbance value of isopropanol)
Designation | Negative Control | Positive Control | Fatty acids, C18- unsaturated, 1,6 Hexanediol Diester |
Mean – blank (Tissue 1) |
1.979 | 0.841 | 1.975 |
Mean – blank (Tissue 2) |
1.947 | 0.776 | 1.852 |
Table 4: % Viability Positive Control and Test Item
Designation | Positive Control | Fatty acids, C18-unsaturated, 1,6 Hexanediol Diester |
% Viability (Tissue 1) | 42.8 | 100.6 |
% Viability (Tissue 2) | 39.5 | 94.3 |
% Viability Mean | 41.2 | 97.5 |
Table 5: Historical Data
Parameter | Optical Density Negative Control |
Relative Tissue Viability Positive Control |
Demineralised H2O | Demineralised H2O | Methyl acetate |
Exposure time | 30 minutes | |
Mean | 1.870 | 32.1% |
Standard deviation | 0.272 | 7.3% |
Range | 1.167 - 2.437 | 12.4 - 57.2% |
Study 19062801G891 | 1.963 | 41.2 |
Applicant's summary and conclusion
- Interpretation of results:
- other: CLP/EU GHS criteria not met, no classification required according to Regulation (EC) No. 1272/2008
- Conclusions:
- Under the conditions of the conducted test, the test substance did not possess irritating properties towards human-derived epidermal keratinocytes in the EpiOcular™ model.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.

EU Privacy Disclaimer
This website uses cookies to ensure you get the best experience on our websites.