Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 945-003-6 | CAS number: -
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Toxicity to reproduction
Administrative data
- Endpoint:
- reproductive toxicity, other
- Remarks:
- Subacute inhalation toxicity: 28 Day study
- Type of information:
- read-across from supporting substance (structural analogue or surrogate)
- Adequacy of study:
- supporting study
- Study period:
- 14-FEB-2007 to 03-DEC-2009
- Reliability:
- 2 (reliable with restrictions)
- Rationale for reliability incl. deficiencies:
- guideline study
- Justification for type of information:
- There is a common mode of action for the reactive diiodofluorinated alkanes involving the removal of the iodine and corresponding decreases in cholesterol due to thyroid deregulation. The PDA-4,6 mixture contains approximately 40% PDA-6 so it is reasonable to assume that the toxicity observed in PDA-6 alone will also occur in the PDA-4,6 mixture. The PDA-4 component (also at ~40%) is likely to be approximately equal in potency to the PDA-6 since the deiodination that leads to the toxicity is a very facile reaction.
Cross-reference
- Reason / purpose for cross-reference:
- read-across: supporting information
Data source
Referenceopen allclose all
- Reference Type:
- study report
- Title:
- Unnamed
- Year:
- 2 009
- Report date:
- 2009
- Reference Type:
- study report
- Title:
- Unnamed
- Year:
- 2 008
- Report date:
- 2008
- Reference Type:
- study report
- Title:
- Unnamed
- Year:
- 2 008
- Report date:
- 2008
Materials and methods
Test guideline
- Qualifier:
- equivalent or similar to guideline
- Guideline:
- other: OECD Guideline 412 (Subacute Inhalation Toxicity: 28-Day Study)
- GLP compliance:
- yes
- Limit test:
- no
Test material
- Reference substance name:
- 1,6-diiodoperfluorohexane
- EC Number:
- 206-794-7
- EC Name:
- 1,6-diiodoperfluorohexane
- Cas Number:
- 375-80-4
- Molecular formula:
- C6F12I2
- IUPAC Name:
- 1,1,2,2,3,3,4,4,5,5,6,6-dodecafluoro-1,6-diiodohexane
- Details on test material:
- - Name of test material (as cited in study report): 1,6-Diiodoperfluorohexane
- Physical state: violet/red liquid
- Molecular weight: 554 g/mol
Constituent 1
Test animals
- Species:
- rat
- Strain:
- Wistar
- Sex:
- male/female
- Details on test animals or test system and environmental conditions:
- TEST ANIMALS
- Strain: HsdHan (SPF)
- Source: Harlan Netherlands B.V. / Postbus 6174, NL-5960 AD Horst / THE NETHERLANDS
- Age at study initiation: 7 to 8 weeks for males; 9 to 10 weeks for females
- Weight at study initiation: the weight variation in animals entering the study did not exceed ± 7% of the mean weight of the corresponding sex.
- Fasting period before study: not applicable
- Housing: animals of the same sex were housed in groups of up to 5 in Makrolon type-IV cages with wire mesh tops and standard softwood bedding ("Lignocel", Schill AG, CH-4132 Muttenz / SWITZERLAND).
- Diet: ad libitum (pelleted standard Kliba-Nafag 3433 rat maintenance diet, batch no. 80/06), except during the daily exposure periods and during ca. 16 h prior to clinical laboratory investigations
- Water: ad libitum (community tap-water from Füllinsdorf, chlorinated to ca. 0.5 ppm), except during the daily exposure periods
- Acclimation period: 15 days, under laboratory conditions, after clinical health examination
ENVIRONMENTAL CONDITIONS
- Temperature: 22 ± 3°C
- Humidity: 30 to 70%
- Air changes: 10 to 15 changes per hr
- Photoperiod: 12 hrs dark / 12 hrs light
IN-LIFE DATES: From 21-FEB-2007 to 03-MAY-2007
Administration / exposure
- Route of administration:
- inhalation: vapour
- Type of inhalation exposure (if applicable):
- whole body
- Remarks on MMAD:
- MMAD / GSD: Not applicable
- Vehicle:
- other: compressed filtered air
- Details on exposure:
- GENERATION OF TEST ATMOSPHERE / CHAMBER DESCRIPTION
- Exposure apparatus: inhalation by whole-body vapour exposure was performed in sealed chambers used for group isolation. These chambers were constructed of stainless steel. Glass doors were equipped with silicone rubber seals. The data of the exposure chambers are summarised in Table 1 below.
- Method of holding animals in test chamber: animals were accustomed to the whole-body inhalation chambers and the exposure conditions for 3 daily periods of ca. 1, 3 and 6 hours, respectively.
- Source and rate of air: the oxygen content was equal to 20.6%.
- Method of conditioning air: no data available
- System of generating particulates/aerosols: for group 2 (ca. 0.2 ppm), gas bags were prepared at a concentration that was defined during technical trials. From the gas bags, the vapour was transferred with a gas pump to a pipe and was then diluted with 420 L/min filtered air to the inlet duct of the exposure chamber.
For groups 3 (ca. 0.632 ppm) and 4 (ca. 2 ppm), the test substance was pumped at a specific rate into a round bottomed glass flask to be vaporised. Compressed air (40 L/min) was supplied into the glass flasks and allowed the liquid to equilibrate to the temperature of the warm walls of the container. The vapour produced then was passed through a pipe and was then diluted with 380 L/min of filtered air to the inlet duct of the exposure chamber.
Gas bags and flasks containing the test substance were kept at room temperature.
- Temperature, humidity, pressure in air chamber: ca. 24.5°C; ca. 33.4%; negative pressure of ca. 2 mm H2O
- Air flow rate: no data available
- Air change rate: 10 to 15 air changes per hour
- Method of particle size determination: not applicable
- Treatment of exhaust air: no data available
TEST ATMOSPHERE
- Brief description of analytical method used: The test item vapour was measured by on-line gas chromatography (GC).
- Samples taken from breathing zone: yes
VEHICLE: not applicable - Analytical verification of doses or concentrations:
- yes
- Details on analytical verification of doses or concentrations:
- The chamber concentration and stability of the test substance over the duration of ca. 6 hours was determined on at least two occasions prior to the start of the animal exposures. The test item was generated in the chambers at nominal concentrations of 0.2, 0.632 / 0.4 and 2 / 0.8 ppm and measured by on-line gas chromatography (GC).
During the treatment period, the concentration of the test substance in the chamber was determined daily, at least 5 times each hour of exposure. Start of recording was after the chamber equilibration time T90 (i.e. 90% equilibration time), and continued until pump off.
The method of analysis corresponded to the following:
- Column: DB-5 (No. 163755)
- Oven: 100°C, isothermal
- Runtime: 3 min
- Injector: 250°C
- Detector: 250°C
- Carrier gas: helium
- Sample loop: ca. 1700 µL
- Retention time: ca. 1.3 - Duration of treatment / exposure:
- 4 consecutive weeks
Due to signs of overt toxicity (body weight loss, emaciation), the vapour concentrations for Groups 3 and 4 were lowered after 12 exposures, starting on Day 13 of exposure (exposures 13 to 20, phase 2). - Frequency of treatment:
- 6 hours/day and 5 days/week
Doses / concentrationsopen allclose all
- Remarks:
- Doses / Concentrations:
0.2, 0.632 and 2 ppm during phase 1 (exposure days 1 to 12) ; i.e., 0.0045, 0.01432 and 0.0453 mg/L
Basis:
nominal conc.
- Remarks:
- Doses / Concentrations:
0.198, 0.635, 1.99 ppm during phase 1 (exposure days 1 to 12) ; i.e., 0.00448, 0.01438, and 0.045078 mg/L
Basis:
analytical conc.
- No. of animals per sex per dose:
- 5 per sex per dose
- Control animals:
- yes, concurrent vehicle
- Details on study design:
- - Dose selection rationale: vapour concentrations were chosen on the basis of the results of the 5-day dose range finding inhalation toxicity study in the rat (see ESR entitled "I-(CF2)6-I - Repeat. dose tox.: 5-day inhal. - K1 2008RCC").
- Due to signs of overt toxicity (body weight loss, emaciation), the vapour concentrations for Groups 3 and 4 were lowered starting on Day 13 of exposure.
- Rationale for animal assignment (if not random): not applicable
- Rationale for selecting satellite groups, post-exposure recovery period in satellite groups: in order to assess the reversibility of any treatment-related findings satellite groups of animals were maintained for a subsequent period of 4 weeks without treatment.
- Section schedule rationale (if not random): not applicable
Results and discussion
Results: P0 (first parental generation)
General toxicity (P0)
- Clinical signs:
- effects observed, treatment-related
- Description (incidence and severity):
- There were no unscheduled deaths during the course of this study. However, in group 2, several females were emaciated towards the end of the treatment period. In group 4, the majority of animals of both genders were emaciated towards the end of the treatment period. The majority of animals of both genders from group 4 were still emaciated during the beginning of the recovery period. No further clinical signs were considered to be related to exposure to the test substance.
- Dermal irritation (if dermal study):
- not examined
- Mortality:
- mortality observed, treatment-related
- Description (incidence):
- There were no unscheduled deaths during the course of this study. However, in group 2, several females were emaciated towards the end of the treatment period. In group 4, the majority of animals of both genders were emaciated towards the end of the treatment period. The majority of animals of both genders from group 4 were still emaciated during the beginning of the recovery period. No further clinical signs were considered to be related to exposure to the test substance.
- Body weight and weight changes:
- effects observed, treatment-related
- Description (incidence and severity):
- BODY WEIGHT (Table 2 in "Any other information on results incl. tables")
After 4 weeks of treatment, body weight and body weight gain were considerably reduced in both genders of all treated groups, related to dose, attaining statistical significance in both genders of groups 3 and 4, and in males of group 2 for body weight gain.
After 4 weeks of recovery, body weight was significantly lower in males of group 4 compared to control (group 1). During recovery, body weight gain was considerably higher in both genders of group 4.
For details, see in Table 2. - Food consumption and compound intake (if feeding study):
- effects observed, treatment-related
- Description (incidence and severity):
- FOOD CONSUMPTION
During the 4-week treatment period, food consumption was non-significantly reduced in both genders of groups 2 to 4 compared to control (group 1). Relative food consumption was slightly and non-significantly reduced in both genders of groups 2 and 3 and increased in both genders of group 4 compared to control (group 1).
During the recovery period, food consumption and relative food were non-significantly reduced in males of group 4 and increased in females of group 4. - Food efficiency:
- not examined
- Water consumption and compound intake (if drinking water study):
- not specified
- Ophthalmological findings:
- no effects observed
- Description (incidence and severity):
- The findings noted were corneal opacity and persistent pupillary membrane. The incidence or distribution of these findings did not distinguish treated animals from controls.
- Haematological findings:
- effects observed, treatment-related
- Description (incidence and severity):
- HAEMATOLOGY (Table 3 in "Any other information on results incl. tables")
After 4 weeks of treatment, several haematological parameters were significantly altered in treated animals of both sexes. Overall, treated males displayed significant decreases in erythrocyte count (RBC), haemoglobin (HB), haematocrit (HCT), neutrophil (Neut) count, and in prothrombin time (PT), as well as an increase in reticulocyte (RETI). Treated females showed similar haematological impairments: significant decreases in RBC, HB, HCT, and Neut count, as well as a significant increase in RETI, lymphocyte (Lymph) and monocyte (Mono) counts.
After 4 weeks of recovery, some haematological parameters remained significantly altered; others appeared in treated animals of both sexes. Males of group 4 showed significant decreases in HB, HCT, HDW, total leukocyte count (WBC), basophil (Baso) count, Lymph count, and Mono count. While females of group 4 only displayed a significant decrease in HB. - Clinical biochemistry findings:
- effects observed, treatment-related
- Description (incidence and severity):
- CLINICAL CHEMISTRY (Table 4 in "Any other information on results incl. tables")
After 4 weeks of treatment, several biochemistry parameters were significantly altered in treated animals of both sexes. Overall, treated males displayed significant increases in glucose, lactate dehydrogenase activity (LDH), chloride, calcium, globulin, as well as significant decreases in urea, total cholesterol, aspartate aminotransferase activity (ASAT), creatinine kinase activity (CK), inorganic phosphorus, and an albumin decrease in group 3 followed by an increase in group 4. Treated females showed the following haematological impairments: significant increases in glucose, triglycerides, alkaline phosphatase (ALP), calcium, inorganic phosphorus, protein, and globulin, as well as significant decreases in urea, creatinine, total cholesterol, CK, sodium, chloride, albumin, and albumin/globulin ratio.
After 4 weeks of recovery, some biochemistry parameters remained significantly altered. Males of group 4 showed only a significant increase in inorganic phosphorus. While females of group 4 displayed significant decreases in calcium, protein, and albumin levels, and a significant elevation in inorganic phosphorus.
In addition, serum α-GST levels were found to be non-significantly decreased in males and females of all treated groups when compared to controls. Regardless of the gender, mean constitutive Inhibin B levels were increased in animals treated for 4 weeks with 0.4 and 0.8 ppm test substance (i.e., groups 3 and 4). After a recovery period of 4 weeks, Inhibin B levels from animals treated with 0.8 ppm test substance returned to control values. The clear decrease of Inhibin B concentrations provided further evidence of gonadotoxicity by the test substance at dose levels of 0.4 and 0.8 ppm. Moreover, T3 levels were significantly decreased in males and females of group 4. Whereas a significant increase in T4 levels was observed in males of groups 3 and 4 and in females of all treated groups. There was no measurement of T3 and T4 levels after the 4-week recovery period. - Urinalysis findings:
- effects observed, treatment-related
- Description (incidence and severity):
- URINALYSIS
The relative density significantly decreased in males of group 2. Osmolality significantly decreased in males and females of group 2. - Behaviour (functional findings):
- not examined
- Immunological findings:
- not specified
- Organ weight findings including organ / body weight ratios:
- effects observed, treatment-related
- Histopathological findings: non-neoplastic:
- effects observed, treatment-related
- Description (incidence and severity):
- HISTOPATHOLOGY: NON-NEOPLASTIC (Table 6 in "Remarks on results including tables and figures")
After 4 weeks of exposure, a minimal centrilobular hepatocellular hypertrophy seen in 2 females of group 2 and a diffuse hepatocellular hypertrophy noted in 2 males of group 2 and in all males and females of groups 3 and 4. This was considered to be possibly adaptive. The hypertrophy seen in males and females of group 4 was associated with minimal to slight midzonal hepatocellular fatty change.Enhanced alveolar histiocytosis occurred in lungs of males and females from group 4.
The pituitary gland of one female from group 4 showed a minimal diffuse hypertrophy of pars distalis.
In addition, diffuse tubular atrophy of testes was seen in 4 males of group 3 and all males of group 4. Atrophy of epididymis occurred in 4 males of groups 3 and 4. An atrophy of seminal vesicles was seen in the majority of all males from all treated groups. An atrophy of prostate was observed in all males of groups 3 and 4. A reduction of the number of corpora lutea in ovaries was described in 1 female of group 3 and 3 females of group 4.
Adrenal cortices presented a minimal diffuse hypertrophy in 2/5 animals of group 3 and in the majority of males and females from group 4. Minimal to slight atrophy of thymus occurred in all males and females of group 4. Both findings were considered to be possibly consequent to stress and/or decreased body weights.
After the 4-week recovery period, the findings in lung, adrenal glands (males only), and male reproductive organs were still present, but mostly in a decreased incidence and/or severity. All other microscopic findings noted in various organs and in all groups examined were considered to be incidental in nature since their morphology, severity, and incidence did not distinguish treated rats from controls. - Histopathological findings: neoplastic:
- no effects observed
Details on results (P0)
In the additional in vitro analysis, constitutive rat 5’-deiodinase activity in the absence of the test item was found to be 2.578% deiodination/ng protein/min. The test substance clearly inhibited 5’-deiodinase activity in isolated rat liver microsomes, in a concentration-dependent manner. A half maximal inhibitory concentration (IC50) of ca. 5 µM could be calculated for the test item, whereas with 4 µM PTU about 50% of the activity was inhibited.
Human liver microsomes showed ca. 5 times lower constitutive 5’-deiodinase activity than rat liver microsomes (i.e., 0.348% deiodination/ng protein/min). Due to the low activity in human microsomes and the concomitantly variations of individual measurements, a calculation of IC50 could not be performed. However, only a slight inhibition of the deiodinase activity by the test item could be estimated.
Therefore, the test substance was suggested to be an inhibitor of 5’-deiodinase activity in rat liver microsomes whereas in human liver microsomes only a slight inhibition of 5’-deiodinase activity was observed.
Effect levels (P0)
open allclose all
- Dose descriptor:
- NOAEC
- Effect level:
- < 0.2 ppm (analytical)
- Based on:
- test mat.
- Sex:
- male/female
- Basis for effect level:
- clinical signs
- body weight and weight gain
- food consumption and compound intake
- haematology
- clinical biochemistry
- organ weights and organ / body weight ratios
- gross pathology
- histopathology: non-neoplastic
- Dose descriptor:
- NOAEC
- Effect level:
- < 0.004 mg/L air (analytical)
- Based on:
- test mat.
- Sex:
- male/female
- Basis for effect level:
- body weight and weight gain
- food consumption and compound intake
- haematology
- clinical biochemistry
- organ weights and organ / body weight ratios
- gross pathology
- histopathology: non-neoplastic
Target system / organ toxicity (P0)
- Critical effects observed:
- yes
- Lowest effective dose / conc.:
- 0.198 ppm
- System:
- male reproductive system
- Organ:
- seminiferous tubules
- Treatment related:
- yes
- Dose response relationship:
- yes
Any other information on results incl. tables
Table 2: Body weight and body weight gain after 4 weeks of treatment and 4 weeks of recovery
Gender |
After 4 weeks of treatment |
After 4 weeks of recovery |
||||||||||
Males |
Females |
Males |
Females |
|||||||||
Group |
1 |
2 |
3 |
4 |
1 |
2 |
3 |
4 |
1 |
4 |
1 |
4 |
Body weight relative to control |
- |
-5.8% |
-15.5%* |
-30.7%* |
- |
+0.3% |
-13.5%* |
-14.2%* |
- |
-12.9%* |
- |
-2.5% |
Body weight gain |
+30.9% |
+21.6%* |
+3.9%* |
-12.1%* |
+12.0% |
+9.3% |
-2.0%* |
-6.8%* |
+15.3% |
+45.1%* |
+4.9% |
+24.8%* |
* = statistically significant
Applicant's summary and conclusion
- Conclusions:
- Based on the results of this study, a no-observed-adverse-effect-concentration (NOAEC) could not be established for the test substance. Therefore, the NOAEC of the test item was considered to be lower than 0.198 ppm.
Target organs identified in all dose groups of this 4-week rat inhalation study with the test substance were the male reproductive organs (adverse character) and the liver (adaptive nature). Furthermore, adverse effects on the thyroid hormone metabolism were observed in all dose groups. - Executive summary:
The purpose of this 4-week inhalation toxicity study was to evaluate the range of toxicity and to indicate potential target organs (if any) associated with the exposure of the test substance when administered to rats by whole-body inhalation for 6 hours/day for 5 days/week for 4 consecutive weeks. In order to assess the reversibility of any treatment-related findings, satellite groups of animals were maintained for a subsequent period of 4 weeks without treatment.
Groups of 5 male and 5 female Wistar rats were exposed to the test substance at target concentrations of 0.2, 0.632, 2 ppm for groups 2 to 4, respectively. The rats of group 1 served as air controls. Additional satellite groups of 5 males and 5 females were kept in groups 1 and 4 to investigate the potential for recovery. Mortality, clinical signs, body weight, food consumption, water consumption, ophthalmoscopic examinations, clinical laboratory investigations, organ weights, macroscopic and microscopic findings were recorded.
The mean analytical vapour concentrations of the test substance were 0.198, 0.635 and 1.99 ppm for groups 2 to 4 during phase 1 (exposure days 1 to 12), then 0.198, 0.434 and 0.78 ppm during phase 2 (exposure days 13 to 20). Due to signs of overt toxicity (body weight loss, emaciation), the vapour concentrations for groups 3 and 4 were lowered starting on day 13 of exposure. Temperature, relative humidity and oxygen concentration during exposure were considered to be suitable for this type of study.
There were no unscheduled deaths during the course of the study.
After 4 weeks of exposure, a pronounced increase in total serum T4 levels was observed in females of all dose groups and in males of groups 3 and 4. Conversely, considerably lower total serum T3 levels were observed in both genders of group 4. The pronounced increase in T4 was considered to lead to an increase in the basal metabolic rate which resulted in reduced body weight development as observed in both genders of all dose groups.
In tissues outside the thyroid, particularly in the liver and kidneys, T4 is converted in T3, an active metabolite, by mono-deiodination of the outer phenol ring. It was hypothesised that the substance acted as inhibitor if the (hepatic) de-iodinase leading to an accumulation of T4 and a concomitant decrease in T3. This suggested mode of action was investigated by determination of in vitro conversion of T4/T3 catalysed by rat and/or human liver microsomes in presence of the test substance. The test substance was showed in vitro to inhibit the 5’-deiodinase activity in rat liver microsomes, whereas in human liver microsomes only a slight inhibition of 5’-deiodinase activity was observed.
The liver was established as target organ of the test substance by the observation of hepatocellular hypertrophy, reflected by increased liver weight, in both genders of all dose groups although it was considered to be of adaptive nature.
Atrophy of testes, epididymis, prostate glands and seminal vesicles in males of groups 3 and 4 correlated with reduced size of those glands. For testes and epididymis, there was a considerable decrease in weight in relation to dose. These findings in male reproductive organs were still present after 4 weeks of recovery and were deemed to be of adverse character. Testicular lesions were confirmed by the significant decrease in Inhibin B levels at the 2 highest doses. Levels returned to normal after the 4 -week recovery period.
In addition, atrophy along with reduced size was also observed in seminal vesicles of males from group 2 and was deemed to be of adverse character.
The atrophy in male reproductive organs was considered to be induced by the changes in thyroid hormones via altered endocrine feedback-regulation of TSH/TRH. Hypertrophy of the pituitary gland was observed in one female from group 4.
Based on the results of this study, a no-observed-adverse-effect-concentration (NOAEC) could not be established for the test substance. Therefore, the NOAEC of the test item was considered to be lower than 0.198 ppm (0.00448 mg/L).
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.