Registration Dossier

Data platform availability banner - registered substances factsheets

Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.

The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.

Diss Factsheets

Toxicological information

Eye irritation

Currently viewing:

Administrative data

Endpoint:
eye irritation: in vitro / ex vivo
Type of information:
experimental study
Adequacy of study:
weight of evidence
Study period:
From 2015-06-01 to 2015-06-02
Reliability:
1 (reliable without restriction)
Rationale for reliability incl. deficiencies:
guideline study

Data source

Reference
Reference Type:
study report
Title:
Unnamed
Year:
2015
Report date:
2015

Materials and methods

Test guidelineopen allclose all
Qualifier:
according to guideline
Guideline:
OECD Guideline 437 (Bovine Corneal Opacity and Permeability Test Method for Identifying i) Chemicals Inducing Serious Eye Damage and ii) Chemicals Not Requiring Classification for Eye Irritation or Serious Eye Damage)
Deviations:
no
Qualifier:
according to guideline
Guideline:
EU method B.47 (Bovine corneal opacity and permeability test method for identifying ocular corrosives and severe irritants)
Deviations:
no
Principles of method if other than guideline:
The study procedures described in the study are also in compliance with the following documents:
- The Ocular Toxicity Working Group (OTWG) of the Interagency Coordinating Committee on the Validation of Alternative Methods (ICCVAM) and the National Interagency Centre for the Evaluation of Alternative Toxicological Methods (NICEATM), Background Review Document (BRD): current status of in vitro test methods for identifying ocular corrosives and severe irritants: The Bovine Corneal Opacity and Permeability (BCOP) Test Method, March 2006.
- In Vitro Techniques in Toxicology Database (INVITTOX) protocol 127. Bovine Opacity and Permeability (BCOP) Assay, 2006.
- Gautheron P, Dukic M, Alix D and Sina J F, Bovine corneal opacity and permeability test: An in vitro assay of ocular irritancy. Fundam Appl Toxicol 18:442-449, 1992.
GLP compliance:
yes (incl. QA statement)

Test material

Constituent 1
Chemical structure
Reference substance name:
1-(4-cyanophenyl)guanidine
EC Number:
611-382-9
Cas Number:
5637-42-3
Molecular formula:
C8H8N4
IUPAC Name:
1-(4-cyanophenyl)guanidine
Test material form:
solid: particulate/powder
Details on test material:
- Name of test material (as stated in study reports): JNJ-4508530-AAA (T002707)
- Physical state: solid (powder)
- Appearance: white, beige powder
Specific details on test material used for the study:
SOURCE OF TEST MATERIAL
- Source and lot/batch No.of test material: Janssen Pharmaceutica N.V., batch: I15BB0573
- Expiration date of the lot/batch: 8 February 2017 (retest date)
- Purity: 100.6%

STABILITY AND STORAGE CONDITIONS OF TEST MATERIAL
- Storage condition of test material: At room temperature

TREATMENT OF TEST MATERIAL PRIOR TO TESTING
- Treatment of test material prior to testing: Since no workable suspension of the test item in physiological saline could be obtained, the test item separates from the vehicle along the wall of the tube despite of treatment with vortex and ultrasonic waves. Therefore, the test item was used as delivered by the sponsor and added pure on top of the corneas.

Test animals / tissue source

Species:
other: bovine eyes
Strain:
other: not applicable
Details on test animals or tissues and environmental conditions:
TEST SYSTEM
- Source: bovine eyes from young cattle were obtained from the slaughterhouse (Vitelco, -'s Hertogenbosch, The Netherlands), where the eyes were excised by a slaughterhouse employee as soon as possible after slaughter. Bovine eyes were used as soon as possible but within 4 hours after slaughter. Eyes were collected and transported in physiological saline in a suitable container under cooled conditions.

Test system

Vehicle:
unchanged (no vehicle)
Controls:
yes, concurrent positive control
yes, concurrent negative control
Amount / concentration applied:
TEST MATERIAL
- Amount(s) applied (volume or weight with unit): approximately 350 mg, applied directly on the corneas in such a way that the cornea was completely covered

VEHICLE
- Amount(s) applied (volume or weight with unit): 750 µl

POSITIVE CONTROL
- Amount(s) applied (volume or weight with unit): 750 µl
- Concentration (if solution): 20% (w/v) imidazole solution prepared in physiological saline
Duration of treatment / exposure:
Corneas were incubated for 240 ± 10 minutes at 32 ± 1°C.
Duration of post- treatment incubation (in vitro):
After 240 ± 10 minutes of treatment, opacity was measured with an opacitometer. The permeability measurement of the corneas was performed following the opacity measurement after the incubation period of 90 ± 5 minutes at 32 ± 1°C in 1 ml of 5 mg Na-fluorescein/ml cMEM solution.
Number of animals or in vitro replicates:
Three corneas were selected at random for each treatment group.
Details on study design:
SELECTION AND PREPARATION OF CORNEAS
The eyes were checked for unacceptable defects, such as opacity, scratches, pigmentation and neovascularization by removing them from the physiological saline and holding them in the light. Those exhibiting defects were discarded.

The isolated corneas were stored in a petri dish with cMEM (Eagle’s Minimum Essential Medium (Life Technologies, Bleiswijk, The Netherlands) containing 1% (v/v) L-glutamine (Life Technologies) and 1% (v/v) Foetal Bovine Serum (Life Technologies)). The isolated corneas were mounted in a corneal holder (one cornea per holder) of MC2 (Clermont-Ferrand, France) with the endothelial side against the O-ring of the posterior half of the holder. The anterior half of the holder was positioned on top of the cornea and tightened with screws. The compartments of the corneal holder were filled with cMEM of 32 ± 1°C. The corneas were incubated for the minimum of 1 hour at 32 ± 1°C.

After the incubation period, the medium was removed from both compartments and replaced with fresh cMEM.

NEGATIVE CONTROL USED
physiological saline (Eurovet Animal Health, Bladel, The Netherlands)

POSITIVE CONTROL USED
20% (w/v) Imidazole (Merck Schuchardt DHG, Germany) [CAS Number 288-32-4] solution prepared in physiological saline

TREATMENT METHOD:
The medium from the anterior compartment was removed and 750 μl of the negative control and 20% (w/v) Imidazole solution (positive control) were introduced onto the epithelium of the cornea. the test item was weighed in a bottle and applied directly on the corneas in such a way that the cornea was completely covered (approximately 350 mg).The holder was slightly rotated, with the corneas maintained in a horizontal position, to ensure uniform distribution of the solutions over the entire cornea. Corneas were incubated in a horizontal position for 240 ± 10 minutes at 32 ± 1°C.

REMOVAL OF TEST SUBSTANCE
- Number of washing steps after exposure period: After the incubation the solutions and the test compound were removed and the epithelium was washed at least three times with MEM with phenol red (Eagle’s Minimum Essential Medium Life Technologies). Possible pH effects of the test item on the corneas were recorded. Each cornea was inspected visually for dissimilar opacity patterns. The medium in the posterior compartment was removed and both compartments were refilled with fresh cMEM and the opacity determinations were performed.

METHODS FOR MEASURED ENDPOINTS:
- Corneal opacity: Opacity determinations were performed on each of the corneas using an opacitometer (OP-KIT, MC2, Clermont-Ferrand, France). The opacity of each cornea was read against an air filled chamber, and the initial opacity reading thus determined was recorded. Corneas that had an initial opacity reading higher than 3 were not used. Three corneas were selected at random for each treatment group.
The opacitometer determined the difference in the light transmission between each control or treated cornea and an air filled chamber. The numerical opacity value (arbitrary unit) was displayed and recorded. The change in opacity for each individual cornea (including the negative control) was calculated by subtracting the initial opacity reading from the final post-treatment reading. The corrected opacity for each positive control or test item treated cornea was calculated by subtracting the average change in opacity of the negative control corneas from the change in opacity of each positive control or test item treated cornea.
The mean opacity value of each treatment group was calculated by averaging the corrected opacity values of the treated corneas for each treatment group.

-Corneal permeability: passage of sodium fluorescein dye measured with the aid of microtiter plate reader (OD490)
The medium of both compartments (anterior compartment first) was removed. The posterior compartment was refilled with fresh cMEM. The anterior compartment was filled with 1 mLof 5 mg Na-fluorescein/ml cMEM solution (Sigma-Aldrich Chemie GmbH, Germany). The holders were slightly rotated, with the corneas maintained in a horizontal position, to ensure uniform distribution of the sodium-fluorescein solution over the entire cornea. Corneas were incubated in a horizontal position for 90 ± 5 minutes at 32 ± 1°C.
After the incubation period, the medium in the posterior compartment of each holder was removed and placed into a sampling tube labelled according to holder number. 360 μl of the medium from each sampling tube was transferred to a 96-well plate. The optical density at 490 nm (OD490) of each sampling tube was measured in triplicate using a microplate reader (TECAN Infinite® M200 Pro Plate Reader). Any OD490 that was 1.500 or higher was diluted to bring the OD490 into the acceptable range (linearity up to OD490 of 1.500 was verified before the start of the experiment). OD490 values of less than 1.500 were used in the permeability calculation.

The mean OD490 for each treatment was calculated using cMEM corrected OD490 values. If a dilution was performed, the OD490 of each reading was corrected for the mean negative control OD490 before the dilution factor was applied to the readings.

SCORING SYSTEM: In Vitro Irritancy Score (IVIS)
The mean opacity and mean permeability values (OD490) were used for each treatment group to calculate an in vitro score:
In vitro irritancy score (IVIS) = mean opacity value + (15 x mean OD490 value)

Additionally the opacity and permeability values were evaluated independently to determine whether the test item induced irritation through only one of the two endpoints.

The IVIS cut-off values for identifying the test items as inducing serious eye damage (UN GHS Category 1) and test items not requiring classification for eye irritation or serious eye damage (UN GHS No Category) are given hereafter:
In vitro score range UN GHS
≤ 3 No Category
> 3; ≤ 55 No prediction can be made
>55 Category 1

Results and discussion

In vitro

Resultsopen allclose all
Irritation parameter:
in vitro irritation score
Value:
24.6
Vehicle controls validity:
not applicable
Negative controls validity:
valid
Positive controls validity:
valid
Remarks on result:
other: Range 8.2 to 41.3
Irritation parameter:
cornea opacity score
Value:
6
Vehicle controls validity:
not applicable
Negative controls validity:
valid
Positive controls validity:
valid
Remarks on result:
other: Range: 1.3 to 9.3
Irritation parameter:
other: permeability score
Value:
1.24
Vehicle controls validity:
not applicable
Negative controls validity:
valid
Positive controls validity:
valid
Remarks on result:
other: Range: 0.458 to 2.132
Other effects / acceptance of results:
OTHER EFFECTS/ACCEPTANCE OF RESULTS
mean in vitro irritancy score (range):
negative control: 0.0
positive control: 134.6 (130.6 to 137.8)

mean opacity scores (range):
negative control: 0.0
positive control: 115.3 (109.3 to 121.3)

mean permeability scores (range):
negative control: 0.000
positive control: 1.286 (1.015 to 1.744)

The corneas treated with the test item were slightly translucent after the 240 minutes of treatment with the test item. No pH effect of the test item was observed on the rinsing medium.

Interpretation:
The IVIS of all replicates was within one category.

Discussion
The negative control responses for opacity and permeability were less than the upper limits of the laboratory historical range indicating that the negative control did not induce irritancy on the corneas. The mean in vitro irritancy score of the positive control (20% (w/v) Imidazole) was 134.6 (130.6 to 137.8) and within the historical positive control data range. Furthermore the opacity and permeability values of the positive control were within two standard deviations of the current historical mean. It was therefore concluded that the test conditions were adequate and that the test system functioned properly.
The test item induced ocular irritation through both endpoints, resulting in a mean in vitro irritancy score of 24.6 (8.2 to 41.3) after 240 minutes of treatment.
Since the test item induced an IVIS > 3 and ≤ 55, no prediction on the classification can be made.

Applicant's summary and conclusion

Interpretation of results:
study cannot be used for classification
Conclusions:
The test item induced ocular irritation through both endpoints, resulting in a mean in vitro irritancy score of 24.6 (8.2 to 41.3) after 240 minutes of treatment. Since the test item induced an IVIS > 3 and ≤ 55, no prediction on the classification can be made.