Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 947-167-4 | CAS number: -
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
![](https://www.echa.europa.eu/o/diss-blank-theme/images/factsheets/A-REACH/factsheet/print_environmental-fate-and-pathways.png)
Biodegradation in water: screening tests
Administrative data
Link to relevant study record(s)
- Endpoint:
- biodegradation in water: ready biodegradability
- Type of information:
- experimental study
- Adequacy of study:
- key study
- Study period:
- 11 July 2017 to 10 August 2017
- Reliability:
- 1 (reliable without restriction)
- Rationale for reliability incl. deficiencies:
- guideline study
- Qualifier:
- according to guideline
- Guideline:
- OECD Guideline 301 B (Ready Biodegradability: CO2 Evolution Test)
- Deviations:
- no
- Qualifier:
- according to guideline
- Guideline:
- EU Method C.4-C (Determination of the "Ready" Biodegradability - Carbon Dioxide Evolution Test)
- Deviations:
- no
- Qualifier:
- according to guideline
- Guideline:
- EPA OPPTS 835.3110 (Ready Biodegradability)
- Deviations:
- no
- GLP compliance:
- yes (incl. QA statement)
- Oxygen conditions:
- aerobic
- Inoculum or test system:
- sewage, predominantly domestic (adaptation not specified)
- Details on inoculum:
- INOCULUM
- A mixed population of activated sewage sludge micro-organisms was obtained on 10 July 2017 from the aeration stage of the Severn Trent Water Plc sewage treatment plant at Loughborough, Leicestershire, UK, which treats predominantly domestic sewage.
PREPARATION OF INOCULUM
- The activated sewage sludge sample was washed twice by settlement and re-suspension in mineral medium to remove any excessive amounts of dissolved organic carbon (DOC) that may have been present. The washed sample was then maintained on continuous aeration in the laboratory at a temperature of approximately 21 °C and used on the day of collection.
- Determination of the suspended solids level of the activated sewage sludge was carried out by filtering a sample (100 mL) of the washed activated sewage sludge by suction through pre-weighed 70 mm diameter Whatman GF/A filter paper (rinsed three times with 20 mL deionized reverse osmosis water prior to drying in an oven) using a Buchner funnel. Filtration was continued for a further 3 minutes after rinsing the filter three successive times with 10 mL of deionized reverse osmosis water. The filter paper was dried in an oven at approximately 105 °C for at least 1 hour and allowed to cool before weighing. The process was repeated until a constant weight was attained. The suspended solids concentration was equal to 2.8 g/L prior to use. - Duration of test (contact time):
- 28 d
- Initial conc.:
- 10 mg/L
- Based on:
- other: carbon
- Parameter followed for biodegradation estimation:
- CO2 evolution
- Reference substance:
- benzoic acid, sodium salt
- Remarks:
- Sigma Aldrich (Batch SLBT3039; Purity > 99.5 %; Expiry date 09 May 2022; Room temperature storage conditions over silica gel)
- Key result
- Parameter:
- % degradation (CO2 evolution)
- Value:
- 73
- Sampling time:
- 28 d
- Details on results:
- DEFINITIVE TEST
- Inorganic carbon values for the test item, procedure control, toxicity control and inoculum control vessels at each analysis occasion are given in Table 1 (attached).
- Percentage biodegradation values of the test and reference items and the toxicity control are given in Table 2 (attached).
- The biodegradation curves are presented in Figure 1 (attached).
- Total and Inorganic Carbon values in the culture vessels on Day 0 are given in Table 3 (attached).
- The pH values of the test preparations on Days 0 and 28 are given in Table 4 (attached).
- Observations made on the contents of the test vessels are given in Table 5 (attached).
VALIDATION CRITERIA
- The total C02 evolution in the inoculum control vessels on Day 28 was 26.20 mg/L and therefore satisfied the validation criterion given in the OECD Test Guidelines.
- The IC content of the test item suspension in the mineral medium at the start of the test (see Table 3, attached) was below 5 % of the TC content and hence satisfied the validation criterion given in the OECD Test Guidelines.
- The difference between the values for C02 production at the end of the test for the replicate vessels was < 20 % and hence satisfied the validation criterion given in the OECD Test Guidelines.
BIODEGRADATION
- Acidification of the test vessels on Day 28 followed by the final analyses on Day 29 was conducted according to the methods specified in the Test Guidelines. This acidification effectively kills the micro-organisms present and drives off any dissolved CO2 present in the test vessels. Therefore any additional CO2 detected in the Day 29 samples originated from dissolved CO2 that was present in the test vessels on Day 28 and hence the biodegradation value calculated from the Day 29 analyses is taken as being the final biodegradation value for the test item.
- The results of the inorganic carbon analysis of samples from the first absorber vessels on Day 29 showed an increase in all replicate vessels.
- The test item attained 73 % biodegradation after 28 days and satisfied the 10-Day window validation criterion, whereby 60% biodegradation must be attained within 10 days of the biodegradation exceeding 10 %. The test item can therefore be considered to be readily biodegradable under the strict terms and conditions of OECD Guideline No. 301B.
- The toxicity control attained 63 % biodegradation after 14 days and 81 % biodegradation after 28 days thereby confirming that the test item did not exhibit an inhibitory effect on the sewage treatment micro-organisms used in the test. - Results with reference substance:
- - Sodium benzoate attained 71 % biodegradation after 14 days and 76 % biodegradation after 28 days thereby confirming the suitability of the inoculum and test conditions.
- Validity criteria fulfilled:
- yes
- Interpretation of results:
- readily biodegradable
- Conclusions:
- The test item attained 73 % biodegradation after 28 days and satisfied the 10-Day window validation criterion, whereby 60 % biodegradation must be attained within 10 days of the biodegradation exceeding 10 %. The test item can therefore be considered to be readilybiodegradable under the strict terms and conditions of OECD Guideline No. 301B.
- Executive summary:
GUIDELINE
A study was performed to assess the ready biodegradability of the test item in an aerobic aqueous medium. The method followed was designed to be compatible with the OECD Guidelines for Testing of Chemicals (1992) No. 301B, "Ready Biodegradability; CO2 Evolution Test" referenced as Method C.4-C of Commission Regulation (EC) No. 440/2008 and US EPA Fate, Transport, and Transformation Test Guidelines OCSPP 835.3110 (Paragraph (m)).
METHODS
The test item, at a concentration of 10 mg carbon/L, was exposed to activated sewage sludge micro-organisms with mineral medium in sealed culture vessels in the dark at temperatures of between 22 and 24 °C for 28 days.
Following the recommendations of the International Standards Organisation (ISO 10634, (1995)), the test item was dissolved in an auxiliary solvent prior to being adsorbed onto a filter paper and subsequent dispersal in test media. Using this method, the test item is evenly distributed throughout the test medium and the surface area of test item exposed to the test organisms is increased thereby increasing the potential for biodegradation.
The biodegradation of the test item was assessed by the determination of carbon dioxide produced. Control solutions with inoculum and the reference item, sodium benzoate, together with a toxicity control were used for validation purposes.
RESULTS
The test item attained 73 % biodegradation after 28 days and satisfied the 10-Day window validation criterion, whereby 60 % biodegradation must be attained within 10 days of the biodegradation exceeding 10 %. The test item can therefore be considered to be readily biodegradable under the strict terms and conditions of OECD Guideline No. 301B.
Reference
Description of key information
The test item attained 73 % biodegradation after 28 days and satisfied the 10-Day window validation criterion, whereby 60 % biodegradation must be attained within 10 days of the biodegradation exceeding 10 %. The test item can therefore be considered to be readily biodegradable (OECD 301 B, EU Method C.4 -C and OCSPP 835.3110).
Key value for chemical safety assessment
- Biodegradation in water:
- readily biodegradable
Additional information
GUIDELINE
A study was performed to assess the ready biodegradability of the test item in an aerobic aqueous medium. The method followed was designed to be compatible with the OECD Guidelines for Testing of Chemicals (1992) No. 301B, "Ready Biodegradability; CO2 Evolution Test" referenced as Method C.4-C of Commission Regulation (EC) No. 440/2008 and US EPA Fate, Transport, and Transformation Test Guidelines OCSPP 835.3110 (Paragraph (m)).
METHODS
The test item, at a concentration of 10 mg carbon/L, was exposed to activated sewage sludge micro-organisms with mineral medium in sealed culture vessels in the dark at temperatures of between 22 and 24 °C for 28 days.
Following the recommendations of the International Standards Organisation (ISO 10634, (1995)), the test item was dissolved in an auxiliary solvent prior to being adsorbed onto a filter paper and subsequent dispersal in test media. Using this method, the test item is evenly distributed throughout the test medium and the surface area of test item exposed to the test organisms is increased thereby increasing the potential for biodegradation.
The biodegradation of the test item was assessed by the determination of carbon dioxide produced. Control solutions with inoculum and the reference item, sodium benzoate, together with a toxicity control were used for validation purposes.
RESULTS
The test item attained 73 % biodegradation after 28 days and satisfied the 10-Day window validation criterion, whereby 60 % biodegradation must be attained within 10 days of the biodegradation exceeding 10 %. The test item can therefore be considered to be readily biodegradable under the strict terms and conditions of OECD Guideline No. 301B.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.
![ECHA](/o/diss-blank-theme/images/factsheets/A-REACH/factsheet/echa_logo.png)