Registration Dossier

Environmental fate & pathways

Biodegradation in water and sediment: simulation tests

Currently viewing:

Administrative data

Link to relevant study record(s)

Reference
Endpoint:
biodegradation in water: sediment simulation testing
Type of information:
calculation (if not (Q)SAR)
Adequacy of study:
key study
Reliability:
2 (reliable with restrictions)
Rationale for reliability incl. deficiencies:
accepted calculation method
Justification for type of information:
Data is from computational model developed by USEPA
Qualifier:
according to
Guideline:
other: Modeling database
Principles of method if other than guideline:
Fugacity Model by EPI Suite estimation database
GLP compliance:
not specified
Specific details on test material used for the study:
- Name of test material: 2-chlorobenzene-1,4-diammonium sulphate
- IUPAC name: 2-chlorobenzene-1,4-diammonium sulphate
- Molecular formula: C6H7ClN2.xH2O4S
- Molecular weight: 240.6661 g/mole
- Smiles : S(=O)(=O)(O)O.c1(c(ccc(c1)N)N)Cl
- Inchl: 1S/C6H7ClN2.H2O4S/c7-5-3-4(8)1-2-6(5)9;1-5(2,3)4/h1-3H,8-9H2;(H2,1,2,3,4)
- Substance type: Organic
- Physical state: Solid (Light grey powder)
Radiolabelling:
not specified
Oxygen conditions:
other: estimation
Inoculum or test system:
not specified
Parameter followed for biodegradation estimation:
test mat. analysis
Details on study design:
Level III Fugacity model
EPI Suite contains a Level III fugacity model. In general, fugacity models predict the partitioning of an organic compound in an evaluative environment. A Level III model assumes steady-state but not equilibrium conditions. The Level III model in EPI Suite predicts partitioning between air, soil, sediment and water using a combination of default parameters and various input parameters that may be user defined or estimated by other programs within EPI Suite.

The model environment consists of 4 main compartments: air, water sediment and soil. There are also sub-compartments such as an aerosol phase, suspended solids, and biota phase, within specific main compartments. A fixed temperature of 25ᵒC is assumed. Mass transport between the compartments via volatilization, diffusion, deposition and runoff are modeled. level III models is a steady state, non-equilibrium model. Steady state conditions mean that the change in concentration of a chemical in each compartment (i) with respect to time eventually approaches zero. The model does not assume that a common equilibrium (fugacity) exists between the phases, so if a chemical is emitted into one compartment it can partition to the other compartments. Loss of chemical occurs through two processes: reaction and advection. Reaction is the biotic or abiotic degradation of the chemical that is calculated using the user specified or model calculated half-lives of the chemical in each of the 4 main compartments. Advection processes are considered for the air, water and sediment compartments. Advection is the removal of chemical from a compartment through losses other than degradation (reaction). The rate of advection in a given compartment is determined by a flow rate (m3/hour), calculated by dividing the volume of the compartment by an advection time.
Compartment:
water
% Recovery:
23.6
Remarks on result:
other: Other details not known
Compartment:
sediment
% Recovery:
0.088
Remarks on result:
other: Other details not known
Key result
% Degr.:
50
Parameter:
other: Half-life in water
Sampling time:
37.5 d
Remarks on result:
other: Other details not known
Key result
% Degr.:
50
Parameter:
other: Half-life in sediment
Sampling time:
337.5 d
Remarks on result:
other: Other details not known
Key result
Compartment:
water
DT50:
37.5 d
Type:
other: estimated data
Temp.:
25 °C
Remarks on result:
other: Other details not known
Key result
Compartment:
sediment
DT50:
337.5 d
Type:
other: estimated data
Temp.:
25 °C
Remarks on result:
other: Other details not known
Transformation products:
not specified
Evaporation of parent compound:
not specified
Volatile metabolites:
not specified
Residues:
not specified

Mass Amount

(percent)

Half-Life (hr)

Emissions (kg/hr)

Water

23.6

900

1000

Sediment

0.0879

8100

0

 

Fugacity (atm)

Reaction (kg/hr)

Advection (kg/hr)

Reaction (percent)

Advection (percent)

Water

3.01e-028

765

994

25.3

33.1

Sediment

2.93e-028

0.317

0.0742

0.0106

0.00247

 

Validity criteria fulfilled:
not specified
Conclusions:
Estimated half life of test chemical 2-chlorobenzene-1,4-diammonium sulphate (CAS no.6219-71-2) in water was 37.5 days (900 h) and in sediment estimated to be 337.5 days ( 8100 h).
Executive summary:

Estimation Programs Interface (EPI Suite, 2017) prediction model was run to predict the half-life in water and sediment for the test compound 2-chlorobenzene-1,4-diammonium sulphate (CAS no.6219 -71 -2) . If released in to the environment, 23.6 % of the chemical will partition into water according to the Mackay fugacity model level III and the half-life period of test chemical in water is estimated to be 37.5 days (360 hrs). The half-life (37.5 days estimated by EPI suite) indicates that the chemical is not persistent in water and the exposure risk to aquatic animals is low whereas the half-life period of test chemical 2-chlorobenzene-1,4-diammonium sulphate in sediment is estimated to be 337.5 days (8100 hrs). However, as the percentage release of test chemical into the sediment is less than 1 % (i.e, reported as 0.0879 %), indicates that test chemical 2-chlorobenzene-1,4-diammonium sulphate is not persistent in sediment as well.

Description of key information

Estimation Programs Interface (EPI Suite, 2017) prediction model was run to predict the half-life in water and sediment for the test compound 2-chlorobenzene-1,4-diammonium sulphate (CAS no.6219 -71 -2) . If released in to the environment, 23.6 % of the chemical will partition into water according to the Mackay fugacity model level III and the half-life period of test chemical in water is estimated to be 37.5 days (360 hrs). The half-life (37.5 days estimated by EPI suite) indicates that the chemical is not persistent in water and the exposure risk to aquatic animals is low whereas the half-life period of test chemical 2-chlorobenzene-1,4-diammonium sulphate in sediment is estimated to be 337.5 days (8100 hrs). However, as the percentage release of test chemical into the sediment is less than 1 % (i.e, reported as 0.0879 %), indicates that test chemical 2-chlorobenzene-1,4-diammonium sulphate is not persistent in sediment as well.

Key value for chemical safety assessment

Half-life in freshwater:
37.5 d
at the temperature of:
25 °C
Half-life in freshwater sediment:
337.5 d
at the temperature of:
25 °C

Additional information

Estimation Programs Interface (EPI Suite, 2017) prediction model was run to predict the half-life in water and sediment for the test compound 2-chlorobenzene-1,4-diammonium sulphate (CAS no.6219 -71 -2) . If released in to the environment, 23.6 % of the chemical will partition into water according to the Mackay fugacity model level III and the half-life period of test chemical in water is estimated to be 37.5 days (360 hrs). The half-life (37.5 days estimated by EPI suite) indicates that the chemical is not persistent in water and the exposure risk to aquatic animals is low whereas the half-life period of test chemical 2-chlorobenzene-1,4-diammonium sulphate in sediment is estimated to be 337.5 days (8100 hrs). However, as the percentage release of test chemical into the sediment is less than 1 % (i.e, reported as 0.0879 %), indicates that test chemical 2-chlorobenzene-1,4-diammonium sulphate is not persistent in sediment as well.