Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 615-229-7 | CAS number: 70969-57-2
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Partition coefficient
Administrative data
Link to relevant study record(s)
- Endpoint:
- partition coefficient
- Type of information:
- (Q)SAR
- Adequacy of study:
- weight of evidence
- Reliability:
- 2 (reliable with restrictions)
- Rationale for reliability incl. deficiencies:
- results derived from a valid (Q)SAR model, but not (completely) falling into its applicability domain, with adequate and reliable documentation / justification
- Remarks:
- The substance is not fully compliant with the applicability domain of the model. However, this calculation is used in a weight of evidence approach, in accordance to the REACh Regulation (EC) No 1907/2006, Annex XI General rules for adaptation of the standard testing regime set out in Annexes VII to X, 1.2. It is adequately documented and justified: the overall internal quality check in VEGA v1.1.3 indicates that the prediction is reliable with a Klimisch score of 2.
- Justification for type of information:
- 1. SOFTWARE
VEGA version 1.1.3
2. MODEL (incl. version number)
MLogP Model v. 1.0.0
3. SMILES OR OTHER IDENTIFIERS USED AS INPUT FOR THE MODEL
See “Test material information”
4. SCIENTIFIC VALIDITY OF THE (Q)SAR MODEL
See attached information on the model provided by the developer. Further information on the OECD criteria as outlined by the applicant is provided below under "Any other information of materials and methods incl. tables"
5. APPLICABILITY DOMAIN
See attached information and information as provided in "Any other information on results incl. tables".
6. ADEQUACY OF THE RESULT
See assessment of adequacy as outlined in the "Overall remarks, attachments" section. - Qualifier:
- according to guideline
- Guideline:
- other: REACH Guidance on QSARs R.6
- Principles of method if other than guideline:
- - Software tool(s) used including version: VEGA v1.1.3
- Model(s) used: MLogP Model version 1.0.0
The model is based on the the Moriguchi LogP (MLogP) and consists of a regression equation based on 13 structural parameters as described in: I. Moriguchi, S. Hirono, Q. Liu, I. Nakagome, and Y. Matsushita, Chem. Pharm. Bull. 1992, 40, 127-130; I. Moriguchi, S. Hirono, I. Nakagome, H. Hirano, Chem. Pharm. Bull. 1994, 42, 976-978. For the purpose of applicability domain assessment, the training set of the Meylan LogP model (9,961 compounds) has been considered, setting all molecules as belonging to the test set.
- Model description: see field 'Justification for non-standard information', 'Attached justification' and 'any other information on Material and methods'
- Justification of QSAR prediction: see field 'Justification for type of information', 'Attached justification' and/or 'overall remarks' - GLP compliance:
- no
- Type of method:
- other: QSAR
- Partition coefficient type:
- octanol-water
- Type:
- log Pow
- Partition coefficient:
- > 10
- Remarks on result:
- other: QSAR result, no information on temperature and pH available.
- Endpoint:
- partition coefficient
- Type of information:
- (Q)SAR
- Adequacy of study:
- weight of evidence
- Reliability:
- 2 (reliable with restrictions)
- Rationale for reliability incl. deficiencies:
- results derived from a valid (Q)SAR model and falling into its applicability domain, with adequate and reliable documentation / justification
- Justification for type of information:
- 1. SOFTWARE
ARChem SPARC. version 4.6
2. MODEL
Properties - Partition coefficient (Distribution)
3. SMILES OR OTHER IDENTIFIERS USED AS INPUT FOR THE MODEL
See “Test material information”
4. SCIENTIFIC VALIDITY OF THE (Q)SAR MODEL
Information on the OECD criteria as outlined by the applicant is provided below under "Any other information of materials and methods incl. tables".
5. APPLICABILITY DOMAIN
See information provided in "Any other information of materials and methods incl. tables".
6. ADEQUACY OF THE RESULT
See assessment of adequacy as outlined in the "Overall remarks, attachments" section. - Qualifier:
- according to guideline
- Guideline:
- other: REACH Guidance on QSARs R.6
- Principles of method if other than guideline:
- Calculation based on SPARC version v4.6, "Properties" calculation type
- Software tool(s) used including version: SPARC v4.6
- Model(s) used: Properties - Partition coefficient (Log)
SPARC calculates the liquid-liquid partition constant by combining the calculated activities at infinite dilution of the molecular species of interest in each of the liquid phases, as described by Hilal et al. 2004. For the complete method's description see field 'Any other information on materials and methods incl. tables'.
The datasets used for the model development (623 molecules) and for the external validation (698 molecules) are described in the field 'Any other information on materials and methods incl. tables'.
- Model description: see field 'Any other information on materials and methods incl. tables'.
- Justification of QSAR prediction: see field 'Justification for type of information' and 'overall remarks'. - GLP compliance:
- no
- Type of method:
- other: QSAR
- Partition coefficient type:
- octanol-water
- Type:
- log Pow
- Partition coefficient:
- > 10
- Temp.:
- 20 °C
- Remarks on result:
- other: QSAR result, no information on pH available.
- Endpoint:
- partition coefficient
- Type of information:
- (Q)SAR
- Adequacy of study:
- weight of evidence
- Reliability:
- 2 (reliable with restrictions)
- Rationale for reliability incl. deficiencies:
- results derived from a valid (Q)SAR model, but not (completely) falling into its applicability domain, with adequate and reliable documentation / justification
- Remarks:
- The substance is not fully compliant with the applicability domain of the model. However, this calculation is used in a weight of evidence approach, in accordance to the REACh Regulation (EC) No 1907/2006, Annex XI General rules for adaptation of the standard testing regime set out in Annexes VII to X, 1.2. It is adequately documented and justified: the overall internal quality check in VEGA v1.1.3 indicates that the prediction is reliable with a Klimisch score of 2.
- Justification for type of information:
- 1. SOFTWARE
VEGA version 1.1.3
2. MODEL (incl. version number)
ALogP Model v. 1.0.0
3. SMILES OR OTHER IDENTIFIERS USED AS INPUT FOR THE MODEL
See “Test material information”
4. SCIENTIFIC VALIDITY OF THE (Q)SAR MODEL
See attached information on the model provided by the developer. Further information on the OECD criteria as outlined by the applicant is provided below under "Any other information of materials and methods incl. tables"
5. APPLICABILITY DOMAIN
See attached information and information as provided in "Any other information on results incl. tables".
6. ADEQUACY OF THE RESULT
See assessment of adequacy as outlined in the "Overall remarks, attachments" section. - Qualifier:
- according to guideline
- Guideline:
- other: REACH Guidance on QSARs R.6
- Principles of method if other than guideline:
- - Software tool(s) used including version: VEGA v1.1.3
- Model(s) used: ALogP Model version 1.0.0
The model is based on the Ghose-Crippen-Viswanadhan LogP (ALogP) and consists of a regression equation based on the hydrophobicity contribution of 120 atom types as described in: A.K. Ghose and G.M. Crippen, J. Comput. Chem. 1986, 7, 565-577; V.N. Viswanadhan et al., J. Comput. Chem. 1993, 14, 1019-1026; A.K. Ghose, V.N. Viswanadhan, J.J. Wendoloski, J. Phys. Chem. A 1998, 102, 3762-3772. For the purpose of applicability domain assessment, the training set of the Meylan LogP model (9,961 compounds) has been considered, setting all molecules as belonging to the test set.
- Model description: see field 'Justification for non-standard information', 'Attached justification' and 'any other information on Material and methods'
- Justification of QSAR prediction: see field 'Justification for type of information', 'Attached justification' and/or 'overall remarks' - GLP compliance:
- no
- Type of method:
- other: QSAR
- Partition coefficient type:
- octanol-water
- Type:
- log Pow
- Partition coefficient:
- > 10
- Remarks on result:
- other: QSAR result, no information on temperature and pH available.
- Endpoint:
- partition coefficient
- Type of information:
- (Q)SAR
- Adequacy of study:
- weight of evidence
- Reliability:
- 2 (reliable with restrictions)
- Rationale for reliability incl. deficiencies:
- results derived from a valid (Q)SAR model, but not (completely) falling into its applicability domain, with adequate and reliable documentation / justification
- Remarks:
- The substance is not fully compliant with the applicability domain of the model. However, this calculation is used in a weight of evidence approach, in accordance to the REACh Regulation (EC) No 1907/2006, Annex XI General rules for adaptation of the standard testing regime set out in Annexes VII to X, 1.2. It is adequately documented and justified: the overall internal quality check in VEGA v1.1.3 indicates that the prediction is reliable with a Klimisch score of 2.
- Justification for type of information:
- 1. SOFTWARE
VEGA version 1.1.3
2. MODEL (incl. version number)
Meylan/Kowwin v. 1.1.4
3. SMILES OR OTHER IDENTIFIERS USED AS INPUT FOR THE MODEL
See “Test material information”
4. SCIENTIFIC VALIDITY OF THE (Q)SAR MODEL
See attached information on the model provided by the developer. Further information on the OECD criteria as outlined by the applicant is provided below under "Any other information of materials and methods incl. tables"
5. APPLICABILITY DOMAIN
See attached information and information as provided in "Any other information on results incl. tables".
6. ADEQUACY OF THE RESULT
See assessment of adequacy as outlined in the "Overall remarks, attachments" section. - Qualifier:
- according to guideline
- Guideline:
- other: REACH Guidance on QSARs R.6
- Principles of method if other than guideline:
- - Software tool(s) used including version: VEGA v1.1.3
- Model(s) used: Meylan/Kowwin LogP Model version 1.1.4
The model is based on the Atom/Fragment Contribution (AFC) method from the work of Meylan and Howard (W.M. Meylan and P.H. Howard, Atom/fragment contribution method for estimating octanol-water partition coefficients, 1995, J. Pharm. Sci. 84: 83-92.), as implemented in the EPI Suite KOWWIN module (http://www.epa.gov/oppt/exposure/pubs/episuite.htm). The calculated model has a lower bound of -5.0 log units (all predictions lower than this value are set to -5.0). A dataset of compounds with experimental logP values has been built starting from the original dataset provided in EPI suite. The set has been processed and cleared from compounds that were replicated or that had problems with the provided molecule structure. The final dataset has 9,961 compounds.
- Model description: see field 'Justification for non-standard information', 'Attached justification' and 'any other information on Material and methods'
- Justification of QSAR prediction: see field 'Justification for type of information', 'Attached justification' and/or 'overall remarks' - GLP compliance:
- no
- Type of method:
- other: QSAR
- Partition coefficient type:
- octanol-water
- Type:
- log Pow
- Partition coefficient:
- > 10
- Remarks on result:
- other: QSAR result, no information on temperature and pH available
Referenceopen allclose all
For detailed information on the results please refer to the attached report.
QSAR result. For detailed description of the model and its applicability, see "Any other information of materials and methods incl. tables".
For detailed information on the results please refer to the attached report.
For detailed information on the results please refer to the attached report.
Description of key information
Log Pow > 10 (WoE QSAR results. Vega version 1.1.3 - three models: Meylan/Kowwin version 1.1.4, MLogP version 1.0.0, ALogP version 1.0.0; SPARC v4.6)
Key value for chemical safety assessment
Additional information
The log Kow was determined by QSAR calculation with four models. Values of 43.77, 48.16, 15.68 and 47.12 were estimated by VEGA ALogP, VEGA Meylan-KOWWIN, VEGA / MLogP and SPARC, respectively. Considering the obtained results and that the substance is characterized by long alkyl chains and a molecular weight of 1853.05, the Log Kow of the substance can be estimated to be > 10.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.