Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 701-133-3 | CAS number: -
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Endpoint summary
Administrative data
Description of key information
Additional information
Considering the low water solubility (< 0.05 mg/L) and the potential for adsorption to organic soil and sediment particles (log Koc: 3.79 - 4.33, MCI method, KOCWIN v2.00), the main compartments for environmental distribution are expected to be the soil and sediment based on their intrinsic properties. Nevertheless, persistency in these compartments is not expected since isononyl isononanoate is readily biodegradable according to the OECD criteria in one experimental study (91% biodegradation after 28 d). Therefore, it is assumed that the substance is eliminated in sewage treatment plants to a high extent. Furthermore, high adsorption potential promotes rapid removal from waste water. If fractions of this chemical were to be released in the aquatic environment, the concentration in the water phase will be reduced by rapid biodegradation and potential of adsorption to solid particles and to sediment. Degradation via abiotic hydrolysis is not considered to be a relevant degradation pathway in the environment since QSAR results using HYDROWIN v2.00 resulted in DT50 > 1 yr at pH 7. Evaporation into air and the transport through the atmospheric compartment is not expected since isononyl isononanoate is not volatile based on the low vapour pressure (0.00398 - 0.0447 Pa). Accumulation in air and the subsequent transport to other environmental compartments is not anticipated. However, if released into air, the substance is susceptible to indirect photodegradation by OH-radicals with a DT50: ≤ 24 h (AOPWIN v1.92). Due to the low water solubility and rapid environmental biodegradation a relevant uptake and bioaccumulation in aquatic organisms is not expected. This is supported by low calculated BCF values of 113.1 - 484.3 L/kg ww (BCFBAF v3.01, Arnot-Gobas, including biotransformation, upper trophic; Müller, 2012) indicating a low bioaccumulation potential.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.