Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 214-300-6 | CAS number: 1120-21-4
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Endpoint summary
Administrative data
Description of key information
Combined Repeated Dose Toxicity Study with the Reproduction/Developmental Toxicity Screening Test – NOAEL ≥ 1000 mg/kg for rats (OECD 422)
Repeated Dose Oral 90d - NOAEL ≥ 5000 mg/kg bw/day for rats (OECD 408)
Repeated Dose Inhalation 90d – NOAEC ≥ 10400 mg/m3 for rats (similar to OECD TG 413)
Key value for chemical safety assessment
Repeated dose toxicity: via oral route - systemic effects
Link to relevant study records
- Endpoint:
- short-term repeated dose toxicity: oral
- Type of information:
- read-across from supporting substance (structural analogue or surrogate)
- Adequacy of study:
- key study
- Study period:
- 1995
- Reliability:
- 1 (reliable without restriction)
- Rationale for reliability incl. deficiencies:
- other: According to or similar to guideline study OECD 422: GLP
- Justification for type of information:
- A discussion and report on the read across strategy is given as an attachment in IUCLID Section 13.
- Reason / purpose for cross-reference:
- read-across: supporting information
- Reason / purpose for cross-reference:
- reference to same study
- Qualifier:
- equivalent or similar to guideline
- Guideline:
- OECD Guideline 422 (Combined Repeated Dose Toxicity Study with the Reproduction / Developmental Toxicity Screening Test)
- GLP compliance:
- yes
- Limit test:
- yes
- Species:
- rat
- Strain:
- Sprague-Dawley
- Sex:
- male/female
- Route of administration:
- oral: gavage
- Vehicle:
- not specified
- Details on oral exposure:
- Males were treated from day 14 prior to the mating phase until the end of the mating phase and then killed, Females were treated from day 14 prior to mating, through day 4 of lactation and then killed.
- Analytical verification of doses or concentrations:
- not specified
- Duration of treatment / exposure:
- Males were treated from day 14 prior to the mating phase until the end of the mating phase and then killed, Females were treated from day 14 prior to mating, through day 4 of lactation and then killed.
- Frequency of treatment:
- 7days/week
- Remarks:
- Doses / Concentrations:
0, 25, 150, or 1000 mg/kg/day (10 ml/kg dosing volume)
Basis:
other: gavage - No. of animals per sex per dose:
- 10 male, 10 female per group
Control group: 10 male, 10 female, 0.5% methylcellulose - Control animals:
- yes
- Observations and examinations performed and frequency:
- Effects on general toxicity, neurobehavioral activity, clinical chemistry, and hematology were evaluated. Gross necropsies and histopathologic examination of tissues were conducted with emphasis on the male reproductive tract.
- Sacrifice and pathology:
- All surviving animals were sacrificed following dosing
- Statistics:
- Adult body and organ weight, food consumption, clinical chemistry, open field activity and hematologic data (raw or transformed) were compared using either parametric or nonparametric (Kruskal-Wallis) ANOVA depending on whether the data were found to be homogeneous or nonhomogeneous using Bartlett's homogeneity of variance procedure. If ANOVA analysis indicated significant differences, Dunnett's test and Mann Whitney's U test, for parametric and nonparemetric data, respectively, were used to analyze for differences between the various dose groups.
- Clinical signs:
- no effects observed
- Mortality:
- no mortality observed
- Body weight and weight changes:
- no effects observed
- Food consumption and compound intake (if feeding study):
- no effects observed
- Food efficiency:
- not specified
- Water consumption and compound intake (if drinking water study):
- not examined
- Ophthalmological findings:
- not examined
- Haematological findings:
- no effects observed
- Clinical biochemistry findings:
- no effects observed
- Urinalysis findings:
- no effects observed
- Behaviour (functional findings):
- no effects observed
- Organ weight findings including organ / body weight ratios:
- no effects observed
- Gross pathological findings:
- no effects observed
- Histopathological findings: non-neoplastic:
- no effects observed
- Histopathological findings: neoplastic:
- no effects observed
- Details on results:
- No deaths or clinical signs of toxicity or behavioral changes were noted. No significant differences in body weights or feed consumption were observed. Startle reflex, open field test, and forelimb grip reflex performance data also revealed no treatment-related findings.
There were also no treatment-related changes in hematology or blood chemistry parameters, organ weights or gross pathology. An apparent treatment-related, slight to moderate hyperplasia of the non-glandular mucosa of the stomach, associated with degeneration, hyperkeratosis and submucosal subacute inflammation and, in a few cases, with erosion, was seen in animals of all treated groups. This effect was considered an artifact of the dosing method and not directly related to the toxicity of the test material. No other treatment related histological changes were observed. - Dose descriptor:
- NOAEL
- Effect level:
- >= 1 000 mg/kg bw/day (nominal)
- Sex:
- male/female
- Basis for effect level:
- other: No treatment-related mortality or significant adverse clinical effects occurred.
- Critical effects observed:
- not specified
- Conclusions:
- Based on these data, the no-observable- adverse effect level (NOAEL) for repeated dose toxicty was >= 1000 mg/kg/day, the highest dose tested.
- Executive summary:
Groups of 10 male and 10 female Sprague Dawley rats were dosed with decane daily by gavage at exposure levels of 0, 25, 150, or 1000 mg/kg/day. Males were dosed from the 14th day prior to mating, during mating until the end of the mating period. Females were dosed from the 14th day prior to the start of the mating phase to day 4 of lactation. Oral dosing of decane produced no evidence of any adverse effects on clinical observations, organ weights, gross pathology, neurobehavioral activity, clinical chemistry or hematology endpoints. Evidence of irritation of the nonglandular mucosa of the stomach was observed, but was considered an artifact of the dosing method and not attributed to the inherent toxicity of the test material. Based on these data, the no-observable- adverse effect level (NOAEL) for repeated dose toxicty was >=1000 mg/kg/day, the highest dose tested.
- Endpoint:
- sub-chronic toxicity: oral
- Type of information:
- read-across from supporting substance (structural analogue or surrogate)
- Adequacy of study:
- key study
- Study period:
- 1991
- Reliability:
- 1 (reliable without restriction)
- Rationale for reliability incl. deficiencies:
- other: Acceptable, well-documented study report equivalent or similar to OECD guideline 408: GLP
- Justification for type of information:
- A discussion and report on the read across strategy is given as an attachment in IUCLID Section 13.
- Reason / purpose for cross-reference:
- read-across: supporting information
- Qualifier:
- equivalent or similar to guideline
- Guideline:
- OECD Guideline 408 (Repeated Dose 90-Day Oral Toxicity Study in Rodents)
- Principles of method if other than guideline:
- According to EPA guideline 82-1
- GLP compliance:
- yes
- Species:
- rat
- Strain:
- Sprague-Dawley
- Sex:
- male/female
- Details on test animals or test system and environmental conditions:
- TEST ANIMALS
- Source: Harlan Sprague Dawley Inc.
- Age at study initiation: ca. 8 weeks
- Weight at study initiation: 238-295g (males); 180-236g (females)
- Housing: individual
- Diet (e.g. ad libitum): ad libitum
- Water (e.g. ad libitum):ad libitum
- Acclimation period: 16 days
ENVIRONMENTAL CONDITIONS
- Temperature (°F): 68-76
- Humidity (%): 40-70
- Photoperiod (hrs dark / hrs light): 12/12
IN-LIFE DATES: From: 1990-12-17 To:1991-07-13 - Route of administration:
- oral: gavage
- Vehicle:
- corn oil
- Details on oral exposure:
- PREPARATION OF DOSING SOLUTIONS:
Test material was mixed with corn oil to ensure a 10ml/kg dose volume at all dose levels.
Test material mixtures were administered by oral gavage at a dose volume of 10ml/kg. The control animals received carrier at a dose of 10ml/kg. The satellite group was dosed at the high dose level for the same duration as main test and allowed to recover for 28 days post-treatment.
VEHICLE
- Amount of vehicle (if gavage): 10ml/kg - Analytical verification of doses or concentrations:
- not specified
- Duration of treatment / exposure:
- 13 weeks
- Frequency of treatment:
- 7 days/week
- Remarks:
- Doses / Concentrations:
5000 mg/kg
Basis:
actual ingested - Remarks:
- Doses / Concentrations:
2500 mg/kg
Basis:
actual ingested - Remarks:
- Doses / Concentrations:
500 mg/kg
Basis:
actual ingested - No. of animals per sex per dose:
- 10 animals/sex/dose
- Control animals:
- yes, concurrent vehicle
- Details on study design:
- Test material mixtures were administered by oral gavage at three different doses at a dose volume of 10ml/kg. The control animals received carrier at a dose of 10ml/kg. The satellite group was dosed at the high dose level for the same duration as the main test and allowed to recover for 28 days post-treatment.
- Post-exposure recovery period in satellite groups: 28 days post-treatment - Observations and examinations performed and frequency:
- CAGE SIDE OBSERVATIONS: Yes
- Time schedule: twice daily monday-friday and once daily on weekends and holidays
DETAILED CLINICAL OBSERVATIONS: Yes
- Time schedule: daily
BODY WEIGHT: Yes
- Time schedule for examinations: prior to dosing, the day of dose initiation, and weekly thereafter
OPHTHALMOSCOPIC EXAMINATION: Yes
at study initiation and during the final week of the main study
HAEMATOLOGY: Yes
- Time schedule for collection of blood: at main study termination and on satellite animals on the day of recovery sacrifice
- Anaesthetic used for blood collection: No
- Animals fasted: Yes
- How many animals:all
CLINICAL CHEMISTRY: Yes
- Time schedule for collection of blood: at main study termination and on satellite animals on the day of recovery sacrifice
- Animals fasted: Yes
- How many animals: all
URINALYSIS: No
NEUROBEHAVIOURAL EXAMINATION: No - Sacrifice and pathology:
- GROSS PATHOLOGY: Yes
HISTOPATHOLOGY: Yes - Statistics:
- The following parameters were statistically analyzed for significant differences: mean hematology parameters, serum chemistry parameters, organ weights, organ to body weight ratios, body weights, mean food consumption. Comparisons were limited to within sex analysis. Statistical evaluation of equality of means was done by an appropriate one way analysis of variance and a test of ordered response in the dose groups. First, Bartlett’s test was performed to determine if the dose groups have equal variance. If the variances were equal, the testing was done using parametric methods, otherwise nonparametric techniques were used.
For the parametric procedures, a standard one way ANOVA using the F distribution to assess significance was used. If significant differences among the means were indicated, Dunnett’s test was used to determine which treatment groups differ significantly from control. In addition to ANOVA, a standard regression analysis for liner response in the dose groups and linear lack of fit were preformed.
For the nonparametric procedure the test of equality of means was performed using the Kruskal-Wallis test. If significant differences among the means was indicated, Dunn’s Summed Rank test was used to determine which treatment group differ significantly from control. In addition, Jonckheere’s test for monotonic trend in the dose response was performed.
The statistical t-test was used to compare the satellite group’s main study termination and recovery termination hematology and clinical chemistry values. In addition, the t-test was used to compare the satellite group's and the control group's relative organ weights. The t-test was also used to compare the high dose and satellite groups to ensure similar results in order to accurately evaluate the recovery effects. - Clinical signs:
- no effects observed
- Mortality:
- no mortality observed
- Body weight and weight changes:
- no effects observed
- Food consumption and compound intake (if feeding study):
- no effects observed
- Food efficiency:
- not examined
- Water consumption and compound intake (if drinking water study):
- not examined
- Ophthalmological findings:
- no effects observed
- Haematological findings:
- no effects observed
- Clinical biochemistry findings:
- no effects observed
- Urinalysis findings:
- not examined
- Behaviour (functional findings):
- not examined
- Organ weight findings including organ / body weight ratios:
- no effects observed
- Gross pathological findings:
- no effects observed
- Histopathological findings: non-neoplastic:
- no effects observed
- Histopathological findings: neoplastic:
- no effects observed
- Details on results:
- CLINICAL SIGNS AND MORTALITY
One male and 1 female died in the control group, 2 females died in the 2500 mg/kg dose group, 4 females died in the 5000 mg/kg dose group, 2 males and 3 females died in the satellite group. With the exception of one 2500 mg/kg female, all of the other 13 listed spontaneous deaths appear to be a result of dosing trauma and/or aspiration of test material (due to physical characteristics of test material and the high dosage volume).
The majority of animals in the control, low and mid dose groups displayed no observable abnormal clinical signs. Observations included but are not limited to scabs, maloccluded incisors, alopecia and staining of fur, dry/wet rales, dyspnea, nasal discharge. The type and incidence of abnormal clinical signs were similar between the high dose and satellite groups with a dramatic increase in incidence when compared to mid dose group. Clinical signs most frequently noted included swollen anus, ano-genital staining, emaciation, and alopecia. During the satellite recovery period, the incidence of abnormal signs decreased over time with an increase in the number of animals exhibiting no observable abnormalities.
BODY WEIGHT AND WEIGHT GAIN
Statistically significant decreases from controls at the p<=0.05 level of significance were noted for mid dose males on days 77, 84, 91 and termination and for the high dose males on Day 42. A statistically significant decrease (p<=0.01) was noted for the high dose group males on Day 49 and continued through the end of the treatment period. Statistically significant decreases were noted for mid dose females (p<=0.05) on day 91 and for high dose females on days 77 and 91. At termination both mid and high dose females displayed a statistically significant decrease in body weight.
FOOD CONSUMPTION AND COMPOUND INTAKE (if feeding study)
Statistically significant increases in food consumption which were linearly related to dose were noted for males on Days 28 through 56 and Day 70 through termination. Significance levels were noted for both the mid and high dose males during these periods. These trends were also evident in the females where statistically significant increases in food consumption were noted on Days 21, 42, 49, and 63 through 95.
OPHTHALMOSCOPIC EXAMINATION
No treatment-related findings.
HAEMATOLOGY
A statistically significant increase in platelets which was linearly related to dose in both the males and females was observed. In addition the male animals displayed a linear dose related increase in white blood cells. The mid dose male values were noted to differ significantly from those of controls for hematocrit and hemoglobin at the p<=0.01 level of significance and mean corpuscular volume and mean corpuscular hemoglobin at the p<=0.05 level of significance.
CLINICAL CHEMISTRY
Statistically significant increases in males (p<=0.01) for urea nitrogen and gamma glutamyl transpeptidase for the high dose males and also the mid dose males for urea nitrogen. An increase for cholesterol was noted for the mid and high dose groups of both sexes (p<=0.01). An increase in alanine aminotransferase was also noted for the mid and high dose males (p<=0.01). Glucose levels were significantly lower than the control values (p<=0.01) for both sexes in the mid and high dose and for the male low dose (P<=0.05). A statistically significant increase in bilirubin in the high dose of both sexes was observed. Other parameters showing statistically significant differences from controls included creatinine, chloride, tryglycerides.
ORGAN WEIGHTS
Liver weights were elevated in male and female rats at 2500 and 5000 mg/kg/day. Adrenal weights were significantly increased in male and female rats at 5000 mg/kg and in female rats at 2500 and 5000 mg/kg. Testes weights were elevated in male rats at 5000 mg/kg. Both the male and female relative kidney weights for all treated groups were significantly different from the control value (p<=0.01).
GROSS PATHOLOGY
Most frequently observed abnormalities include small and large intestine distension (mid and high dose groups); swollen anus (high dose groups), staining of the fur (mid and high dose groups). - Dose descriptor:
- NOAEL
- Effect level:
- >= 5 000 mg/kg bw/day (nominal)
- Sex:
- male/female
- Basis for effect level:
- other: No treatment-related mortality or significant adverse clinical effects occurred.
- Critical effects observed:
- not specified
- Conclusions:
- The No Observed Adverse Effect Level (NOAEL) following oral exposure to MRD-89-582 for 90-days is greater than or equal to 5000 mg/kg/day.
- Executive summary:
MRD-89-582 was administered by oral gavage to rats at concentrations of 500, 2500 and 5000 mg/kg, 7 days a week for 13 weeks to assess the subchronic toxicity. An additional group of animals, dosed at 5000 mg/kg/day, was held for 4 weeks to assess reversibility. No treatment-related mortality was observed; however, male body weights were decreased while food consumption increased in the 2500 and 5000 mg/kg dose groups. Liver weights were elevated in male and female rats at 2500 and 5000 mg/kg/day. Adrenal weights were significantly increased in male and female rats at 5000 mg/kg and in female rats at 2500 and 5000 mg/kg. Testes weights were elevated in male rats at 5000 mg/kg. Kidney effects occurred in males at all dose levels, and are indicative of alpha-2u-globulin nephropathy. Alpha-2u-globulin nephropathy, also known as hyaline droplet nephropathy, results from the formation of complexes with a naturally occurring protein (alpha-2u-globulin) in the kidneys of male rats. These complexes can accumulate in the proximal renal tubule and may produce species-specific histopathological changes. These kidney effects are specific to male rats and are not considered to be of biological relevance to humans.
Dose-related changes in hematology or serum chemistry parameters were observed and were consistent with the changes seen in the liver. Histological findings of hepatocellular hypertrophy (liver cell enlargement) were seen in livers of both sexes in all dose groups. These findings are believed to have been a compensatory response and not an indication of toxicity. Additionally, these liver effects were reversible and occurred only at high doses that are not typical of hydrocarbon exposures for humans. Other treatment-related effects were mucosal thickening and other signs of irritation of the stomach and anus which appear to be the direct result of high dose intubation of a the locally irritating test substance. These effects are believed to have been a compensatory response to local irritation and not an indication of toxicity. All treatment-related effects were reversible within the 4-week recovery period. Based on the results, the No Observed Adverse Effect Level (NOAEL) for the 90-day study was greater than 5000 mg/kg/day.
- Endpoint:
- short-term repeated dose toxicity: oral
- Type of information:
- experimental study
- Adequacy of study:
- weight of evidence
- Study period:
- 1996
- Reliability:
- 1 (reliable without restriction)
- Rationale for reliability incl. deficiencies:
- other: According to or similar to guideline study OECD 422:GLP.
- Qualifier:
- equivalent or similar to guideline
- Guideline:
- OECD Guideline 422 (Combined Repeated Dose Toxicity Study with the Reproduction / Developmental Toxicity Screening Test)
- GLP compliance:
- not specified
- Limit test:
- no
- Species:
- rat
- Strain:
- Crj: CD(SD)
- Sex:
- male/female
- Details on test animals or test system and environmental conditions:
- Number of Animals: Males, 48; females, 48 (total)
Crj:CD (SD strain) SPF male and female rats 8 weeks old were purchased from Nippon Charles River Co., Ltd., and quarantined for 14 days. The administration was started when the animals were 10 weeks old, and the mean body weight (body weight range) of males at the start of administration was 400.3 g (374-431 g), and that of females was 226.5 g (192-255 g).
The animals were individually placed in metal bracket cages with a metal mesh floor before mating, one male and one female per cage during mating, one mother animal per cage during gestation, and a mother and her newborns after birth.
Animals were maintained in a barrier-isolated room with a temperature of 23 +/- 3°C, humidity of 55 +/- 10%, ventilation changes of 10-15 times per hour, and an illumination of 12 hr/day. After the 17th day of gestation, the metal mesh floor was changed to a stainless steel pan spread with a floor-covering material for experimental animals. Solid feed (CRF-1, manufactured by Oriental Yeast Industry Co., Ltd.), and tap water (tap water of the City of Sapporo) were given freely. - Route of administration:
- oral: gavage
- Vehicle:
- olive oil
- Details on oral exposure:
- The administration of the test substance was carried out by oral gavage. The volume administered was 5 mL per kg of body weight, and it was calculated based on the results of body weight measured on the day closest to the day of administration. The administration period was 46 days, which included 14 days before mating and during the mating period for males. The administration period for the female rats began 14 days before mating and continued until after the first 3 days of nursing. The administration was started when the animals were 10 weeks old, and the mean body weight (body weight range) of males at the start of administration was 400.3 g (374-431 g), and that of females was 226.5 g (192-255 g).
- Analytical verification of doses or concentrations:
- no
- Details on analytical verification of doses or concentrations:
- The administration period was 46 days, which including 14 days before mating and during the mating period for males. The administration period for the female rats began 14 days before mating and continued until after the first 3 days of nursing.
- Duration of treatment / exposure:
- Once per day
- Dose / conc.:
- 0 mg/kg bw/day (actual dose received)
- Remarks:
- Vehicle
- Dose / conc.:
- 100 mg/kg bw/day (actual dose received)
- Dose / conc.:
- 300 mg/kg bw/day (actual dose received)
- Dose / conc.:
- 1 000 mg/kg bw/day (actual dose received)
- No. of animals per sex per dose:
- Female: 12; Male: 12 per dose
- Control animals:
- yes, concurrent no treatment
- Observations and examinations performed and frequency:
- General conditions, body weight and feed intake:
For all cases, the general conditions were observed once a day throughout the study term. The body weight measurements were carried out on the 1st (before administration), 2nd, 5th, 7th, 10th and 14th day after administration and subsequently, every 7 days (including the last day of administration) as well as 0th, 1st, 3rd, 5th, 7th, 10th, 14th, 17th and 20th day of gestation and the 0th, 1st and 4th day of nursing for females. In addition, the body weight gain and rate were calculated from the 1st day of administration to the 46th day for males and for females, from the 1st day to the 14th day, 0th day to the 20th day of gestation and 0th day to the 4th day of nursing. The amount of feed intake was measured on the same days as those of body weight measurements except mating period and dissection day for males and 0th day of gestation and 0th day of nursing for females. Incidentally, with respect to the number of day of pregnancy, the successful copulation day was set as the 0th day of gestation, and in the case of lactation, the day of delivery completion was set as the 0th day of nursing.
Urinary tests:
In the final week (43rd-44th day of administration) during the administration term, 6 male cases of each group were placed in metabolism-measurement cages, and their urine samples were collected under non-starvation conditions. For urine samples, collected in about 3 hr, pH, protein, glucose, ketone, urobilinogen, bilirubin, occult blood reaction, and sedimentation (microscopic observation) were tested, and for urine samples collected for 21 hr, volume, and specific gravity were measured. In addition, the amount of drinking water (weight) in urine samples was also measured.
Hematological tests:
Before dissection, all male animals were starved for about 16 hr, blood samples were collected from the femoral vein under ether anesthesia, and EDTA•2K-treated blood samples were used to measure the erythrocyte count, mean erythrocyte volume, platelet count, leucocyte count, hemoglobin content (cyanmethemoglobin method), hematocrit (calculated from erythrocyte count and mean erythrocyte volume), mean erythrocyte hemoglobin content (calculated from erythrocyte count and hemoglobin content), mean erythrocyte hemoglobin concentration (calculated from hematocrit and hemoglobin content), reticulocyte proportion (Brecher method) and leucocyte fraction (microscopic observation). In addition, untreated blood samples were used to measure coagulation time (fluid viscosity change air pressure measurement, Gryner Microcogulometer). Furthermore, plasma samples, which were prepared by collecting blood samples from the abdominal aorta, treating with sodium citrate and subsequently carrying out centrifugation at 3,000 rpm for 10 min, were used to measure prothrombin time (thromboplastin method) and activated partial thromboplastin time (ellagic acid method).
Hematobiochemical test:
After the hematological tests, serum samples of all male cases, which were prepared by collecting from the abdominal aorta, were used to measure GOT, GPT (IFCC method), GPT (glutamyl-p-nitroanilide substrate clathrate method), choline esterase (butyrylthiocholine iodide substrate method), blood glucose (hexokinase method), total cholesterol and phospholipids (enzymatic method), triglyceride (free glycerol deduction method), total bilirubin (azobilirubin method), urea nitrogen (urease-indophenol method), creatinine (Yaffe method), calcium (OCPC method), inorganic phosphorus (Fiske-Subbarow method), total protein (Biuret method) and albumin (BCG method) (Hitachi automated analyzer, Model 7150); sodium and potassium (flame photometry: Corning flame photometer, Model 480); chlorine (coulometric titration method: Hiranuma chloride counter, Model CL-6M); A/G ratio (calculated from total protein and albumin); and protein fraction (cellulose acetate electrophoresis). - Sacrifice and pathology:
- Dissection and organ weight measurement:
After the 46th day of administration, all males were sacrified ex sanguine under ether anesthesia after blood sampling and dissected. Any newborns that died were dissected immediately after discovery. Females that successfully copulated were sacrificed on the 4th day of nursing. Female rats who did not successfully copulate on the 25th day of gestation (infertile cases) on the 26th day of gestation were sacrified. The implantation sites in the uterus and corpus luteum of pregnancy in the ovaries were counted. In addition, the weight measurements were carried out for the liver, kidney, thymus gland, adrenal gland, testes, epididymis and ovary, and the ratio to body weight was calculated.
Histopathological observation:
The following tissues were embedded in paraffin and stained with hematoxylin-eosin or with oil red O staining/ luxol fast blue-Bodian double stain to conduct a histopathological examination: the liver, kidney, spleen, heart, lung, brain (cerebrum and cerebellum), hypophysis, thymus gland, adrenal gland, thyroid gland, stomach (anterior stomach and glandular stomach), duodenum, jejunum, ileum, cecum, colon, rectum, testes, epididymis, prostate gland, ovary and abnormal sites. - Statistics:
- Fisher’s accuracy probability test was carried out to compare the control and undecane-administered groups for the sexual cycle, copulation index, fertility index, gestation index and nursing index. Other test parameters were analyzed by using Bartlett’s homogeneity of variance and subsequently single dimensional configuration variance analysis or Kruskal-Walls method. If the results were found to be significant, the Dunnett ‘s method or Mann-Whitney U-test method was used to compare the undecane-administered groups from the control group. However, those qualitative items in urinary tests were analyzed by using the Kruskal-Walls method and Mann-Whitney U-test method. The viability of newborns on the 4th day and body weight were analyzed using the litter as a unit and the results were compared with the control group. A significance level of less than 5% was considered to be statistically significant.
- Clinical signs:
- no effects observed
- Mortality:
- not examined
- Body weight and weight changes:
- no effects observed
- Food consumption and compound intake (if feeding study):
- no effects observed
- Food efficiency:
- not examined
- Water consumption and compound intake (if drinking water study):
- not examined
- Ophthalmological findings:
- not examined
- Haematological findings:
- effects observed, non-treatment-related
- Description (incidence and severity):
- In males given 1000 mg/kg a decrease in hemoglobin concentration and an increase in white blood cell count was observed; however, no corresponding findings in females, autopsy, or histopathology were observed.
- Clinical biochemistry findings:
- effects observed, non-treatment-related
- Description (incidence and severity):
- In males given 1000 mg/kg a decrease in albumin, and increases in a2-globulin, GPT, cholinesterase and total cholesterol were observed; however, no corresponding findings in females, autopsy, or histopathology were observed.
- Urinalysis findings:
- not examined
- Behaviour (functional findings):
- not examined
- Immunological findings:
- not examined
- Organ weight findings including organ / body weight ratios:
- no effects observed
- Gross pathological findings:
- no effects observed
- Neuropathological findings:
- not specified
- Histopathological findings: non-neoplastic:
- no effects observed
- Histopathological findings: neoplastic:
- not examined
- Other effects:
- no effects observed
- Details on results:
- In the repeat dose toxicity test, salivation was observed in males and females given 300 and 1000 mg/kg. Body weight gain was suppressed in males given 1000 mg/kg, and body weights were increased in females given 1000 mg/kg during the lactation period. Food consumption was decreased in males given 300 and 1000 mg/kg in the first half of the administration period, increased in males given 1000 mg/kg in the second half of the administration period, and increased in females given 1000 mg/kg in the second half of pregnancy and during the lactation period. Hematological and blood chemical examinations revealed a decrease in hemoglobin concentration, an increase in the white blood cell count, a decrease in albumin, and increases in a2-globulin, GPT, cholinesterase and total cholesterol in males given 1000 mg/kg. Relative liver weights and absolute and relative thymus weights were increased in males given 1000 mg/kg, and absolute and relative liver weights were elevated in females given 1000 mg/kg. No effects were detected in the autopsy or histopathology findings. Due to the lack of effects in both sexes and the lack of corresponding histopathology, these effects are determined not to be toxicologically relevant. The NOAEL for repeat dose toxicity is considered to be 1000 mg/kg/day for both sexes.
- Dose descriptor:
- NOAEL
- Effect level:
- 1 000 mg/kg bw/day (actual dose received)
- Sex:
- male/female
- Basis for effect level:
- other: No effects noted at highest dose tested.
- Critical effects observed:
- no
- Conclusions:
- The NOAEL for repeat dose toxicity is considered to be >=1000 mg/kg/day for both sexes. The NOAELs for reproductive performance is considered to be >=1000 mg/kg/day.
- Executive summary:
In the repeat dose toxicity test, male and female rats were given 0, 100, 300 and 1000 mg/kg orally by gavage. Male rats were dosed from the 14thday prior to mating and during the mating period. Female rats were dosed from the 14thday prior to mating until after the 3rdday of nursing. Salivation was observed in males and females given 300 and 1000 mg/kg. Body weight gain was suppressed in males given 1000 mg/kg, and body weights were increased in females given 1000 mg/kg during the lactation period. Food consumption was decreased in males given 300 and 1000 mg/kg in the first half of the administration period, increased in males given 1000 mg/kg in the second half of the administration period, and increased in females given 1000 mg/kg in the second half of pregnancy and during the lactation period. Hematological and blood chemical examinations revealed a decrease in hemoglobin concentration, an increase in the white blood cell count, a decrease in albumin, and increases in a2-globulin, GPT, cholinesterase and total cholesterol in males given 1000 mg/kg. Relative liver weights and absolute and relative thymus weights were increased in males given 1000 mg/kg, and absolute and relative liver weights were elevated in females given 1000 mg/kg. No effects were detected in the autopsy or histopathology findings. Due to the lack of effects in both sexes and the lack of corresponding histopathology, these effects are determined not to be toxicologically relevant. The NOAEL for repeat dose toxicity is considered to be 1000 mg/kg/day for both sexes.
Referenceopen allclose all
Endpoint conclusion
- Endpoint conclusion:
- no adverse effect observed
- Dose descriptor:
- NOAEL
- 5 000 mg/kg bw/day
- Study duration:
- subchronic
- Species:
- rat
- Quality of whole database:
- 1 substance specific weight of evidence study (short-term) available, and 2 key read across studies (short-term and sub-chronic) available from structural analogues.
Repeated dose toxicity: inhalation - systemic effects
Link to relevant study records
- Endpoint:
- sub-chronic toxicity: inhalation
- Type of information:
- read-across from supporting substance (structural analogue or surrogate)
- Adequacy of study:
- key study
- Study period:
- 1980
- Reliability:
- 1 (reliable without restriction)
- Rationale for reliability incl. deficiencies:
- other: Acceptable, well-documented study report equivalent or similar to OECD guideline 413.
- Justification for type of information:
- A discussion and report on the read across strategy is given as an attachment in IUCLID Section 13.
- Reason / purpose for cross-reference:
- read-across: supporting information
- Qualifier:
- equivalent or similar to guideline
- Guideline:
- OECD Guideline 413 (Subchronic Inhalation Toxicity: 90-Day Study)
- GLP compliance:
- not specified
- Species:
- rat
- Strain:
- other: albino
- Sex:
- male/female
- Details on test animals or test system and environmental conditions:
- TEST ANIMALS
- Source: Shell Toxicology Laboratory Breding Unit
- Age at study initiation: 10-13 weeks
- Housing: three of one sex per cage
- Diet (e.g. ad libitum): ad libitum except during exposure
- Water (e.g. ad libitum): ad libitum
During the period of the test the laboratory temperature varied between 19.4°C and 26.1°C and the relative humidity between 37% and 74%.
Barometric pressure was within the range 753 to 768 mm Hg - Route of administration:
- inhalation: vapour
- Type of inhalation exposure:
- whole body
- Vehicle:
- other: no data
- Details on inhalation exposure:
- The atmospheres were generated by completely evaporating the solvent into the streams of ventilating air entering the chambers using micrometering pumps and vaporizers. The vaporizers consisted of electrically heated quartz tubes whose surface temperatures were adjusted during preliminary experiments to the minimal for complete evaporation of the solvent.
Each chamber was constructed of aluminum, with a volume of 1 m3 and was ventilated by air drawn from the laboratory through dust filters. The exhaust ducts from each chamber entered a common exhaust duct through which the air was drawn by a fan situated on the roof of the laboratory.
The total air flow rate through the main duct exhausting all four chambers was recorded continuously throughout the test by means of an electro—anemometer mounted in the duct. Slight adjustments were made as required to compensate for the effects of wind at the efflux point. The total flow rate was maintained at 2.0 + 0.03 m3 ∙min- 1. The individual flow rates through each chamber were balanced before the exposures began but were not checked further throughout the test since any significant changes would have been detected by the resulting changes in toxicant concentration. The flow rates were adjusted to 0.50 m3 ∙min- 1. - Analytical verification of doses or concentrations:
- yes
- Details on analytical verification of doses or concentrations:
- The test atmospheres were analyzed sequentially by means of a total hydrocarbon analyzer fitted with a flame-ionisation detector (Beckman 109A). The analyzer was calibrated during the test by means of known concentrations of SHELLSOL TD, prepared in a Teflon FEP gas sampling bag.
The recorder traces from the analyser were examined daily and a ‘daily mean concentration’ value was estimated by visual inspection. The daily mean concentrations for each of the test atmospheres were then ‘pooled’ to give weekly mean concentrations. The overall means of the weekly mean concentrations are given below:
Nominal concentration Observed concentration
(mg/m3) (mg/m3) (ppm)
10400* 10186 SD 327 1444
5200 5200 SD 207 737
2600 2529 SD 116 359
*83% saturated.
The desired concentrations of solvent in the test atmospheres were reached within 10 mm of the start of each exposure period. They then stayed remarkably constant throughout the 6 h exposure period. - Duration of treatment / exposure:
- Six hours/day
- Frequency of treatment:
- five days/week for 13 weeks
- Remarks:
- Doses / Concentrations:
0, 2600, 5200, 10400 mg/m3
Basis:
nominal conc. - No. of animals per sex per dose:
- 6 animals/sex/dose (total of 12 animals/dose)
- Control animals:
- yes, sham-exposed
- Details on study design:
- The start and finish of the experiment was staggered in order that the optimum number of animals could be examined histopathologically after exposure. On each of four consecutive days, four male and four female rats per chamber were started on the experiment. The remaining two males and two females were started the next day. Thirteen weeks later, four male and four female rats per chamber were removed from the experiment for pathological examination on each of four consecutive days. The remaining two males and two females were removed the next day.
- Observations and examinations performed and frequency:
- CAGE SIDE OBSERVATIONS: Yes
- Time schedule for examinations: daily
DETAILED CLINICAL OBSERVATIONS: Yes
BODY WEIGHT: Yes
- Time schedule for examinations: weekly
FOOD CONSUMPTION:
- Food consumption for each animal determined weekly: Yes
FOOD EFFICIENCY:
- Body weight gain in kg/food consumption in kg per unit time X 100 calculated as time-weighted averages from the consumption and body weight gain data: Yes / No / No data
WATER CONSUMPTION: Yes
- Time schedule for examinations: weekly
OPHTHALMOSCOPIC EXAMINATION: No
HAEMATOLOGY: Yes
- Time schedule for collection of blood: 18h after the last 13 week exposure
- How many animals: all
CLINICAL CHEMISTRY: Yes
- Time schedule for collection of blood: 18h after the last 13 week exposure
- How many animals: all
URINALYSIS: Yes / No / No data
- Time schedule for collection of urine:
- Metabolism cages used for collection of urine: Yes / No / No data
- Animals fasted: Yes / No / No data
- Parameters checked in table [No.?] were examined.
NEUROBEHAVIOURAL EXAMINATION: No
OTHER: - Sacrifice and pathology:
- GROSS PATHOLOGY: Yes
HISTOPATHOLOGY: Yes for all animals exposed to the high and medium concentrations, plus the control animals. Kidneys of low concentration males were also examined. - Other examinations:
- Organ weights
After post-mortem examinations the following organs were weighed:
Brain
Liver
Heart
Spleen
Kidneys
Testes
Histopatholgy. Tissues taken for histological examination were:
Mammary gland (posterior site with skin)
Mesenteric lymph node
Pancreas
Stomach
Intestine at 5 levels
Caecum
Spleen
Liver (middle, left and triangular lobes)
Adrenals
Kidneys
Ovaries or testes
Uterus or prostate
Seminal vesicles
Urinary bladder
Thyroid (with oesophagus and trachea)
Trachea (mid course and bifurcation)
Heart
Lungs
Nasal cavity
Thymus
Eye and lacrimal glands
Salivary gland (submaxillary)
Brain
Spinal cord (thoracic)
Pituitary
Tongue
Sciatic nerves
Muscle (femoral)
Knee joint and femur
Plus any other macroscopic lesion in any tissues.
The samples marked were held in 4% neutral formalin and only processed for histological examination if indicated by clinical or other pathological findings. - Statistics:
- Body and organ weights were analysed by covariance analysis using initial body weight as the covariate. Reported means were adjusted for initial body weight if a significant covariance relationship existed: where no significant covariance relationship was found, unadjusted means were reported.
Organ weights were further examined by covariance analysis using the terminal body weight as the covariate. The organ weight means are reported as adjusted for terminal body weight if a significant covariance relationship existed. Although not a true covariance analysis (because the terminal body weights are dependent upon treatment), the analysis does provide an aid to the interpretation of organ weights when there are differences in terminal body weights. The analysis attempts to predict what the organ weights would have been, had all the animals had the same terminal body weight.
Clinical, chemical and haematological parameters were examined using analysis of variance.
The analysis allowed for the fact that animals were multihoused. Differences in response can be affected by cage environment as well as by treatment but this effect is minimal in a study of this duration.
The significance of any difference between treated and control group means was tested using the Williams t test (1971, 1972). However, if a monotonic dose response could not be assumed Dunnett’s test (1964) was used. - Clinical signs:
- no effects observed
- Mortality:
- no mortality observed
- Body weight and weight changes:
- no effects observed
- Food consumption and compound intake (if feeding study):
- no effects observed
- Food efficiency:
- not examined
- Water consumption and compound intake (if drinking water study):
- no effects observed
- Ophthalmological findings:
- not examined
- Haematological findings:
- no effects observed
- Clinical biochemistry findings:
- no effects observed
- Urinalysis findings:
- not examined
- Behaviour (functional findings):
- not examined
- Organ weight findings including organ / body weight ratios:
- no effects observed
- Gross pathological findings:
- no effects observed
- Histopathological findings: non-neoplastic:
- no effects observed
- Histopathological findings: neoplastic:
- no effects observed
- Details on results:
- No deaths were recorded and clinical signs of toxicity were absent in the low and medium exposure groups; the high exposure groups were slightly lethargic when examined up to one hour after cessation of exposure. Body weight gain was slightly reduced in all female groups and in high exposure males. Water intake was increased in the high exposure males only.
Female aspartate amino transferase and alanine amino transferase were decreased in all female groups exposed to SHELLSOL-TD. No pathological changes were detected which could explain the observed decreases in these enzymes. In view of this lack of supporting evidence and the fact that the control values for these two parameters were high when compared with historical controls in the laboratory, these changes were not considered toxicologically significant.
Male alkaline phosphatase, potassium, chloride and albumin were increased at the high exposure level. These were considered to represent biological variation in the rat and were not considered treatment-related.
Male kidney weights were increased at all exposure levels. Hyaline intracytoplasmic inclusions and an increased incidence of tubular degeneration and/or dilatation were seen in the cortical tubules of all exposed males. These are a common effect observed in repeated-dose animal studies with hydrocarbon solvents. These kidney changes have been identified to result from an alpha2u-globulin-mediated process that because of its sex and species specificity, is not regarded as relevant to humans.
A low grade anemia was evident in all males exposed to SHELLSOL TD, characterized by slight reductions in haemoglobin, packed cell volume and total erythrocyte counts. Splenic weight was increased in the high concentration males. These changes were not seen in females and were not considered dose-related and therefore considered not toxicologically relevant.
Male and female liver weights were increased at the high and medium exposures, and male liver weights at the low exposures also. No lesions were identified histologically in the livers of treated animals that could account for the increased weight. This change was considered a physiological response to exposure rather than a toxic response and as such is not of toxicological significance. - Dose descriptor:
- NOAEC
- Effect level:
- > 10 400 mg/m³ air (nominal)
- Sex:
- male/female
- Basis for effect level:
- other: No treatment-related mortality or significant adverse clinical effects occurred.
- Critical effects observed:
- not specified
- Conclusions:
- The NOAEC for SHELLSOL TD is 10186 mg/m3 (actual) (1444 ppm) under the test conditions of this study.
- Executive summary:
SHELLSOL TC was administered by inhalation to albino rats for 6 hours/day, 5 days/week for 13 weeks at nominal vapor concentrations of 10400 mg/m3, 5200 mg/m3, and 2600 mg/m3 to assess inhalation toxicity. No mortality or treatment-related effects in any of the hematology and serum chemistry values were observed. Liver and kidney weights were increased in male rats at all exposure levels, male heart weights were increased at the highest exposure level and liver and kidney weights were increased in female rats at 10400 mg/m3. In addition, the male rats exposed to SHELLSOL TC at all concentrations showed tubular degeneration and hyaline inclusion-droplets in the epithelium. There was also scattered degeneration of the proximal renal tubules which showed cytoplasmic pallor and shrinkage. Occasionally the degenerate tubules were surrounded by a lymphocyte infiltrate. Many tubules also showed dilatation of the cortico-medullary junction, the dilated tubule being filled with a flocculent eosinophilic material. The kidney effects observed in male rats are indicative of alpha-2u-globulin nephropathy. Alpha-2u-globulin nephropathy, also known as hyaline droplet nephropathy, results from the formation of complexes with a naturally occurring protein (alpha-2u-globulin) in the kidneys of male rats. These complexes can accumulate in the proximal renal tubule and may produce species-specific histopathological changes. These kidney effects are specific to male rats and are not considered to be of biological relevance to humans. Histopathological examination did not reveal any abnormalities that were considered treatment related. As there were no pathologic changes, changes in organ weights mentioned above were judged to have been compensatory rather than toxic effects. Based on these results, the No Observed Adverse Effect Concentration (NOAEC) was greater than or equal to 10400 mg/m3.
Reference
Endpoint conclusion
- Endpoint conclusion:
- no adverse effect observed
- Dose descriptor:
- NOAEC
- 10 400 mg/m³
- Study duration:
- subchronic
- Species:
- rat
- Quality of whole database:
- 1 key and 3 supporting read across studies available from structural analogues.
Repeated dose toxicity: inhalation - local effects
Endpoint conclusion
- Endpoint conclusion:
- no study available
Repeated dose toxicity: dermal - systemic effects
Link to relevant study records
- Endpoint:
- short-term repeated dose toxicity: dermal
- Data waiving:
- study scientifically not necessary / other information available
- Justification for data waiving:
- a short-term toxicity study does not need to be conducted because a reliable sub-chronic (90 days) or chronic toxicity study is available, conducted with an appropriate species, dosage, solvent and route of administration
- Critical effects observed:
- not specified
- Endpoint:
- sub-chronic toxicity: dermal
- Data waiving:
- study scientifically not necessary / other information available
- Justification for data waiving:
- other:
- Critical effects observed:
- not specified
Referenceopen allclose all
Endpoint conclusion
- Endpoint conclusion:
- no study available
Repeated dose toxicity: dermal - local effects
Endpoint conclusion
- Endpoint conclusion:
- no study available
Additional information
Short-term studies are available for Undecane and structural analogue Decane. Sub-chronic data is available for structural analogues Hydrocarbons, C9 -C11, isoalkanes, cyclics, <2% aromatics, Hydrocarbons, C10 -C12, isoalkanes, Hydrocarbons, C10 -C13, n-alkanes, isoalkanes, cyclics, <2% aromatics, and Isododecane. Additionally, OECD Guideline 408 (Repeated Dose 90-Day Oral Toxicity Study in Rodents) tests are proposed for structural analogues, Hydrocarbons, C9-C11, isoalkanes, cyclics, <2% aromatics and Hydrocarbons, C14-C19, isoalkanes, cyclics, <2% aromatics. This data is read across to Undecane based on analogue read across and a discussion and report on the read across strategy is provided as an attachment in IUCLID Section 13.
This endpoint will be updated subsequent to ECHA's approval of the testing proposals and availability of data upon completion of the studies.
Oral:
Decane
In a key study (Sasol, 1995) groups of 10 male and 10 female Sprague Dawley rats were dosed with decane daily by gavage at exposure levels of 0, 25, 150, or 1000 mg/kg/day. Males were dosed from the 14th day prior to mating, during mating until the end of the mating period. Females were dosed from the 14th day prior to the start of the mating phase to day 4 of lactation. Oral dosing of decane produced no evidence of any adverse effects on clinical observations, organ weights, gross pathology, neurobehavioral activity, clinical chemistry or hematology endpoints. Evidence of irritation of the nonglandular mucosa of the stomach was observed, but was considered an artifact of the dosing method and not attributed to the inherent toxicity of the test material. Based on these data, the no-observable- adverse effect level (NOAEL) for repeated dose toxicty was >=1000 mg/kg/day, the highest dose tested.
Undecane
In an OECD Guideline 422 study (MHW, 1996), male and female rats were given 0, 100, 300 and 1000 mg/kg orally by gavage. Male rats were dosed from the 14thday prior to mating and during the mating period. Female rats were dosed from the 14thday prior to mating until after the 3rdday of nursing. Salivation was observed in males and females given 300 and 1000 mg/kg. Body weight gain was suppressed in males given 1000 mg/kg, and body weights were increased in females given 1000 mg/kg during the lactation period. Food consumption was decreased in males given 300 and 1000 mg/kg in the first half of the administration period, increased in males given 1000 mg/kg in the second half of the administration period, and increased in females given 1000 mg/kg in the second half of pregnancy and during the lactation period. Hematological and blood chemical examinations revealed a decrease in hemoglobin concentration, an increase in the white blood cell count, a decrease in albumin, and increases in a2-globulin, GPT, cholinesterase and total cholesterol in males given 1000 mg/kg. Relative liver weights and absolute and relative thymus weights were increased in males given 1000 mg/kg, and absolute and relative liver weights were elevated in females given 1000 mg/kg. No effects were detected in the autopsy or histopathology findings. Due to the lack of effects in both sexes and the lack of corresponding histopathology, these effects are determined not to be toxicologically relevant. The NOAEL for repeat dose toxicity is considered to be 1000 mg/kg/day for both sexes.
Hydrocarbons, C10-C13, n-alkanes, isoalkanes, cyclics, <2% aromatics
In a key study (Exxon, 1991), the test material (Hydrocarbons, C10-C13, n-alkanes, isoalkanes, cyclics, <2% aromatics) was administered by oral gavage to rats at concentrations of 500, 2500 and 5000 mg/kg, 7 days a week for 13 weeks to assess the subchronic toxicity. An additional group of animals, dosed at 5000 mg/kg/day, was held for 4 weeks to assess reversibility. No treatment-related mortality was observed; however, male body weights were decreased while food consumption increased in the 2500 and 5000 mg/kg dose groups. Liver weights were elevated in male and female rats at 2500 and 5000 mg/kg/day. Adrenal weights were significantly increased in male and female rats at 5000 mg/kg and in female rats at 2500 and 5000 mg/kg. Testes weights were elevated in male rats at 5000 mg/kg. Kidney effects occurred in males at all dose levels, and are indicative of alpha-2u-globulin nephropathy. Alpha-2u-globulin nephropathy, also known as hyaline droplet nephropathy, results from the formation of complexes with a naturally occurring protein (alpha-2u-globulin) in the kidneys of male rats. These complexes can accumulate in the proximal renal tubule and may produce species-specific histopathological changes. These kidney effects are specific to male rats and are not considered to be of biological relevance to humans.
Dose-related changes in hematology or serum chemistry parameters were observed and were consistent with the changes seen in the liver. Histological findings of hepatocellular hypertrophy (liver cell enlargement) were seen in livers of both sexes in all dose groups. These findings are believed to have been a compensatory response and not an indication of toxicity. Additionally, these liver effects were reversible and occurred only at high doses that are not typical of hydrocarbon exposures for humans. Other treatment-related effects were mucosal thickening and other signs of irritation of the stomach and anus which appear to be the direct result of high dose intubation of a the locally irritating test substance. These effects are believed to have been a compensatory response to local irritation and not an indication of toxicity. All treatment-related effects were reversible within the 4-week recovery period. Based on the results, the No Observed Adverse Effect Level (NOAEL) for the 90-day study was greater than 5000 mg/kg/day.
Inhalation:
Hydrocarbons, C9-C11, isoalkanes, cyclics, <2% aromatics
In a supporting study (ExxonMobil, 1978), the test material (Hydrocarbons, C9-C11, isoalkanes, cyclics, <2% aromatics) was administered by inhalation to Sprague-Dawley rats for 6 hours/day, 5 days/week for 12 weeks at nominal vapor concentrations of 300 ppm and 900 ppm to assess subchronic inhalation toxicity. Ten animals per sex per group were examined at 4 weeks, 8 weeks and all survivors were sacrificed and examined at 12 weeks. Male body weight gain was significantly decreased at 900 ppm. There were no treatment-related effects in any of the hematology and serum chemistry values. Liver and kidney weights were increased in male rats at 900 ppm, and adrenal weights were increased in female rats at 900 ppm. The kidney effects observed in male rats are indicative of alpha-2u-globulin nephropathy. Alpha-2u-globulin nephropathy, also known as hyaline droplet nephropathy, results from the formation of complexes with a naturally occurring protein (alpha-2u-globulin) in the kidneys of male rats. These complexes can accumulate in the proximal renal tubule and may produce species-specific histopathological changes. These kidney effects are specific to male rats and are not considered to be of biological relevance to humans. Histopathological examination did not reveal any abnormalities that were considered treatment related. As there were no pathologic changes, changes in organ weight to body weight ratios were judged to have been compensatory rather than toxic effects. Based on these results, the No Observed Adverse Effect Level (NOAEL) was greater than or equal to 900 ppm (>=5220 mg/m3).
Hydrocarbons, C10-C12, isoalkanes, <2% aromatics
In a key study (Shell, 1980), the test material (Hydrocarbons, C10-C12, isoalkanes, <2% aromatics) was administered by inhalation to albino rats for 6 hours/day, 5 days/week for 13 weeks at nominal vapor concentrations of 10400 mg/m3, 5200 mg/m3, and 2600 mg/m3to assess inhalation toxicity. No mortality or treatment-related effects in any of the hematology and serum chemistry values were observed. Liver and kidney weights were increased in male rats at all exposure levels, male heart weights were increased at the highest exposure level and liver and kidney weights were increased in female rats at 10400 mg/m3. In addition, the male rats exposed to the test material at all concentrations showed tubular degeneration and hyaline inclusion-droplets in the epithelium. There was also scattered degeneration of the proximal renal tubules which showed cytoplasmic pallor and shrinkage. Occasionally the degenerate tubules were surrounded by a lymphocyte infiltrate. Many tubules also showed dilatation of the cortico-medullary junction, the dilated tubule being filled with a flocculent eosinophilic material. The kidney effects observed in male rats are indicative of alpha-2u-globulin nephropathy. Alpha-2u-globulin nephropathy, also known as hyaline droplet nephropathy, results from the formation of complexes with a naturally occurring protein (alpha-2u-globulin) in the kidneys of male rats. These complexes can accumulate in the proximal renal tubule and may produce species-specific histopathological changes. These kidney effects are specific to male rats and are not considered to be of biological relevance to humans. Histopathological examination did not reveal any abnormalities that were considered treatment related. As there were no pathologic changes, changes in organ weights mentioned above were judged to have been compensatory rather than toxic effects. Based on these results, the No Observed Adverse Effect Concentration (NOAEC) was greater than or equal to 10400 mg/m3.
In a supporting study (Exxon, 1978), the test material (C10-C12, isoalkanes, <2% aromatics) was administered by inhalation to rats at vapor concentrations of 300 or 900 ppm for 6 hours/day, 5 days/week for 12 weeks. No treatment-related effects on mortality were observed and there were no significant alterations in hematology or clinical chemistry parameters. Body weights were decreased and kidney weights were elevated in male rats at 300 and 900 ppm. Relative mean liver weights were elevated in males at 900 ppm, but no changes were noted in histopathology. Under the conditions of this study, the No Observed Adverse Effect Level (NOAEL) is greater than 900 ppm (> 5220 mg/m3).
Isododecane
A supporting subchronic inhalation toxicity study (Bayer, 1981) with isododecane was carried out by exposing groups of twenty male and twenty female rats to atmospheres containing 0, 200, 600, or 1800 ppm isododecane 6 hours a day, 5 days a week, for a period of 13 weeks. No treatment-related effects on mortality were observed and there were no significant alterations in hematological, blood chemical or urinary values, or in organ weights, that were toxicologically relevant. An increased incidence of tubular nephrosis was found in the kidneys of males at all levels of exposure. These lesions were characterized by a loss of cytoplasmic eosinophilia and striation, a loss of brush border, and an increases cellular and nuclear size of epithelium of mainly the proximal tubules. The kidney effects observed in male rats are indicative of alpha-2u-globulin nephropathy. Alpha-2u-globulin nephropathy, also known as hyaline droplet nephropathy, results from the formation of complexes with a naturally occurring protein (alpha-2u-globulin) in the kidneys of male rats. These complexes can accumulate in the proximal renal tubule and may produce species-specific histopathological changes. These kidney effects are specific to male rats and are not considered to be of biological relevance to humans. Based on these results, the No Observed Adverse Effect Level (NOAEL) was greater than or equal to 1800 ppm (10440 mg/m3).
Justification for classification or non-classification
Based on available data, Undecane does not meet the criteria for classification for repeated dose toxicity (STOT-RE) under the new Regulation (EC) 1272/2008 on classification, labeling and packaging of substances and mixtures (CLP).
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.