Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 263-793-4 | CAS number: 63022-06-0
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Hydrolysis
Administrative data
- Endpoint:
- hydrolysis
- Data waiving:
- study technically not feasible
- Justification for data waiving:
- other:
- Justification for type of information:
- Hydrolysis is a bond-making, bond-breaking process in which a molecule, RX, reacts with water, forming a new R-O bond with the oxygen atom from the water and breaking the R-X bond in the substance’s molecule (March, 1977). One possible pathway is the direct displacement of X with OH.
R-X + H2O -> R-OH + HX
The most commonly used method to determine hydrolysis is to compare the target compound with an analogous compound or compounds containing similar functional groups and structure.
Pigment red 81:5 is composed mainly of organic functional groups that are generally resistant to hydrolysis. The only functional group present that is potentially susceptible to hydrolysis is the carboxylic ester.
Hydrolysis of carboxylic esters results in the formation of a carboxylic acid and an alcohol, both of which do not undergo further hydrolysis. The two most common mechanisms for hydrolysis are involving acyl-oxygen bond cleavage by acid catalysis (AAC2) and base mediation (BAC2). Hydrolysis via the AAC2 mechanism involves initial protonation of the carbonyl oxygen. Protonation polarises the carbonyl group, removing electron density from the carbon atom and making it more electrophilic and thus more susceptible to nucleophilic addition by water. The base-mediated mechanism (BAC2) proceeds via the direct nucleophilic addition of HO- to the carbonyl group. Base mediation occurs because the hydroxide ion is a stronger nucleophile than water. Although neutral hydrolysis of carboxylic acid esters does occur, the base-mediated reaction will be the dominant pathway in most natural waters. Generally, acid hydrolysis will dominate in acidic waters with pH values below 4.
Data source
Materials and methods
Results and discussion
Applicant's summary and conclusion
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.