Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 274-695-6 | CAS number: 70609-66-4
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Biodegradation in water: screening tests
Administrative data
Link to relevant study record(s)
- Endpoint:
- biodegradation in water: screening tests
- Type of information:
- (Q)SAR
- Adequacy of study:
- weight of evidence
- Reliability:
- 2 (reliable with restrictions)
- Rationale for reliability incl. deficiencies:
- results derived from a valid (Q)SAR model and falling into its applicability domain, with limited documentation / justification
- Justification for type of information:
- The supporting QMRF report has been attached.
- Qualifier:
- according to guideline
- Guideline:
- OECD Guideline 301 C (Ready Biodegradability: Modified MITI Test (I))
- GLP compliance:
- not specified
- Specific details on test material used for the study:
- - Name of test material : Sodium 2-[(1-oxododecyl)amino]ethanesulphonate
- Molecular formula: C14H29NO4S.Na
- Molecular weight: 329.4342 g/mol
- Smiles notation : CCCCCCCCCCCC(=O)NCCS(=O)(=O)[O-].[Na+]
- InChl : 1S/C14H29NO4S.Na/c1-2-3-4-5-6-7-8-9-10-11-14(16)15-12-13-20(17,18)19;/h2-13H2,1H3,(H,15,16)(H,17,18,19);/q;+1/p-1
- Substance type: Organic
- Physical state: solid - Oxygen conditions:
- aerobic
- Inoculum or test system:
- other: Microorganisms
- Duration of test (contact time):
- 28 d
- Parameter followed for biodegradation estimation:
- other: BOD
- Key result
- Parameter:
- other: BOD
- Value:
- 84.2
- Sampling time:
- 28 d
- Remarks on result:
- other: other details not available
- Details on results:
- The test chemical sodium 2-[(1-oxododecyl)amino]ethanesulphonate showed 84.2 % biodegradability in 28 days by considering BOD as parameter and microorganisms as inoculum.
- Validity criteria fulfilled:
- not specified
- Interpretation of results:
- readily biodegradable
- Conclusions:
- The test chemical sodium 2-[(1-oxododecyl)amino]ethanesulphonate showed 84.2 % biodegradability in 28 days by considering BOD as parameter and microorganisms as inoculum. Therefore it is concluded that the test chemical sodium 2-[(1-oxododecyl)amino]ethanesulphonate is readily biodegradable.
- Executive summary:
Biodegradability of test chemical sodium 2-[(1-oxododecyl)amino]ethanesulphonate (CAS no. 70609-66-4) was predicted using OECD QSAR tool box.v.3.3 using log Kow as primary descriptor. The test chemical sodium 2-[(1-oxododecyl)amino]ethanesulphonate showed 84.2 % biodegradability in 28 days by considering BOD as parameter and microorganisms as inoculum. Therefore it is concluded that the test chemical sodium 2-[(1-oxododecyl)amino]ethanesulphonate is readily biodegradable.
Reference
The
prediction was based on dataset comprised from the following
descriptors: BOD
Estimation method: Takes average value from the 5 nearest neighbours
Domain logical expression:Result: In Domain
((((((((("a"
or "b" )
and ("c"
and (
not "d")
)
)
and ("e"
and (
not "f")
)
)
and "g" )
and "h" )
and "i" )
and "j" )
and "k" )
and ("l"
and "m" )
)
Domain
logical expression index: "a"
Referential
boundary: The
target chemical should be classified as Acylation AND Acylation >> Ester
aminolysis AND Acylation >> Ester aminolysis >> Amides by Protein
binding by OASIS v1.3
Domain
logical expression index: "b"
Referential
boundary: The
target chemical should be classified as Acid moiety OR Amides OR Salt OR
Surfactants-Anionic by Aquatic toxicity classification by ECOSAR ONLY
Domain
logical expression index: "c"
Referential
boundary: The
target chemical should be classified as No alert found by DNA binding by
OECD
Domain
logical expression index: "d"
Referential
boundary: The
target chemical should be classified as Acylation OR Acylation >> P450
Mediated Activation to Isocyanates or Isothiocyanates OR Acylation >>
P450 Mediated Activation to Isocyanates or Isothiocyanates >> Formamides
OR Michael addition OR Michael addition >> P450 Mediated Activation to
Quinones and Quinone-type Chemicals OR Michael addition >> P450 Mediated
Activation to Quinones and Quinone-type Chemicals >> Arenes OR Michael
addition >> P450 Mediated Activation to Quinones and Quinone-type
Chemicals >> Hydroquinones OR Michael addition >> Polarised
Alkenes-Michael addition OR Michael addition >> Polarised
Alkenes-Michael addition >> Alpha, beta- unsaturated amides OR SN1 OR
SN1 >> Carbenium Ion Formation OR SN1 >> Carbenium Ion Formation >>
Hydrazine OR SN1 >> Iminium Ion Formation OR SN1 >> Iminium Ion
Formation >> Aliphatic tertiary amines OR SN1 >> Nitrenium Ion formation
OR SN1 >> Nitrenium Ion formation >> Aromatic azo OR SN1 >> Nitrenium
Ion formation >> Aromatic nitro OR SN1 >> Nitrenium Ion formation >>
Primary aromatic amine OR SN1 >> Nitrenium Ion formation >> Tertiary
aromatic amine OR SN1 >> Nitrenium Ion formation >> Unsaturated
heterocyclic azo by DNA binding by OECD
Domain
logical expression index: "e"
Referential
boundary: The
target chemical should be classified as No alert found by DNA binding by
OASIS v.1.3
Domain
logical expression index: "f"
Referential
boundary: The
target chemical should be classified as Non-covalent interaction OR
Non-covalent interaction >> DNA intercalation OR Non-covalent
interaction >> DNA intercalation >> DNA Intercalators with Carboxamide
Side Chain OR SN2 OR SN2 >> DNA alkylation OR SN2 >> DNA alkylation >>
Alkylphosphates, Alkylthiophosphates and Alkylphosphonates by DNA
binding by OASIS v.1.3
Domain
logical expression index: "g"
Referential
boundary: The
target chemical should be classified as Biodegrades Fast by Biodeg
probability (Biowin 5) ONLY
Domain
logical expression index: "h"
Referential
boundary: The
target chemical should be classified as Class 5 (Not possible to
classify according to these rules) by Acute aquatic toxicity
classification by Verhaar (Modified) ONLY
Domain
logical expression index: "i"
Referential
boundary: The
target chemical should be classified as Reactive unspecified by Acute
aquatic toxicity MOA by OASIS ONLY
Domain
logical expression index: "j"
Similarity
boundary:Target:
CCCCCCCCCCCC(=O)NCCS(=O)(=O)O{-}.[Na]{+}
Threshold=30%,
Dice(Atom centered fragments)
Atom type; Count H attached; Hybridization
Domain
logical expression index: "k"
Similarity
boundary:Target:
CCCCCCCCCCCC(=O)NCCS(=O)(=O)O{-}.[Na]{+}
Threshold=60%,
Dice(Atom centered fragments)
Atom type; Count H attached; Hybridization
Domain
logical expression index: "l"
Parametric
boundary:The
target chemical should have a value of Molecular weight which is >= 284
Da
Domain
logical expression index: "m"
Parametric
boundary:The
target chemical should have a value of Molecular weight which is <= 353
Da
Description of key information
Biodegradability of test chemical sodium 2-[(1-oxododecyl)amino]ethanesulphonate (CAS no. 70609-66-4) was predicted using OECD QSAR tool box.v.3.3 using log Kow as primary descriptor. The test chemical sodium 2-[(1-oxododecyl)amino]ethanesulphonate showed 84.2 % biodegradability in 28 days by considering BOD as parameter and microorganisms as inoculum. Therefore it is concluded that the test chemical sodium 2-[(1-oxododecyl)amino]ethanesulphonate is readily biodegradable.
Key value for chemical safety assessment
- Biodegradation in water:
- readily biodegradable
Additional information
Predicted data for the target compound sodium 2-[(1-oxododecyl)amino]ethanesulphonate (CAS no. 70609-66-4) and supporting weight of evidence studies for its read across substance were reviewed for the biodegradation end point which are summarized as below:
Biodegradability of test chemical sodium 2-[(1-oxododecyl)amino]ethanesulphonate (CAS no. 70609-66-4) was predicted using OECD QSAR tool box.v.3.3 using log Kow as primary descriptor. The test chemical sodium 2-[(1-oxododecyl)amino]ethanesulphonate showed 84.2% biodegradability in 28 days by considering BOD as parameter and microorganisms as inoculum. Therefore it is concluded that the test chemical sodium 2-[(1-oxododecyl)amino]ethanesulphonate is readily biodegradable.
Another prediction done by using Estimation Programs Interface Suite (EPI suite, 2017) to estimate the biodegradation potential of the test compound sodium 2-[(1-oxododecyl)amino]ethanesulphonate (CAS no. 70609-66-4) in the presence of mixed populations of environmental microorganisms. The biodegradability of the substance was calculated using seven different models such as Linear Model, Non-Linear Model, Ultimate Biodegradation Timeframe, Primary Biodegradation Timeframe, MITI Linear Model, MITI Non-Linear Model and Anaerobic Model (called Biowin 1-7, respectively) of the BIOWIN v4.10 software. The results indicate that chemical sodium 2-[(1-oxododecyl)amino]ethanesulphonate is expected to be readily biodegradable.
In a supporting weight of evidence study from authoritative database (J Check, 2017) of read across chemical Sodium 2-(methyloleoylamino)ethane-1-sulphonate (CAS no.137-20-2) biodegradation test was performed by taking activated sludge as inoculums at 30 mg/L concentration. Biodegradation was analyzed by using three parameters that are BOD, TOC and test material analysis by UV vis . The initial concentration of read across chemical was 100 mg/L and study design was of standard type. After two weeks (14 days) of incubation read across chemical Sodium 2-(methyloleoylamino)ethane-1-sulphonate undergoes 75 % degradation by BOD parameter, 79 % degradation TOC parameter and 100% degradation by test material analysis by UV vis parameter. Thus based on percent biodegradability it is concluded that read aross chemical Sodium 2-(methyloleoylamino)ethane-1-sulphonate is readily biodegradable.
In another supporting weight of evidence study from same source as mentioned above ( J Check, 2017) of read across chemical Dodecyl sodium sulfate (CAS no. 151-21-3) biodegradation test was carried out by taking activated sludge as inoculums at 30 mg/L concentration. Biodegradation was analyzed by using three parameters that are O2 consumption (BOD), TOC removal and test material analysis by UV vis . The initial concentration of read across chemical was 100 mg/L and the equipments used in study was of standard type. After two weeks (14 days) of incubation read across chemical Dodecyl sodium sulfate undergoes 85 % degradation by O2 Consumption (BOD) parameter, 99.3 % degradation by both TOC removal parameter and test material analysis by UV vis parameter.Thus based on percent biodegradability it is concluded that read across chemical Dodecyl sodium sulfate is readily biodegradable.
On the basis of results of above mentioned studies for target chemical sodium 2-[(1-oxododecyl)amino]ethanesulphonate (CAS no.70609-66-4) ( from OECD QSAR tool box v3.3 and EPI suite) and supporting weight of evidence studies ( from J Check, 2017). It is concluded that the test chemical sodium 2-[(1-oxododecyl)amino]ethanesulphonate can be expected to be readily biodegradable.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.