Registration Dossier
Registration Dossier
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 209-940-8 | CAS number: 598-56-1
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data

Exposure related observations in humans: other data
Administrative data
- Endpoint:
- exposure-related observations in humans: other data
- Type of information:
- other: occupational monitoring
- Adequacy of study:
- other information
- Reliability:
- 4 (not assignable)
- Rationale for reliability incl. deficiencies:
- other: Insufficient information to determine reliability
Data source
Reference
- Reference Type:
- publication
- Title:
- Exposure to chemical agents in Swedish aluminum foundries and aluminum remelting plants--a comprehensive survey
- Author:
- Westberg HB; Seldén AI; Bellander T
- Year:
- 2 001
- Bibliographic source:
- Applied Occupational and Environmental Hygiene, 16 (1), 66-77
Materials and methods
- GLP compliance:
- not specified
Test material
- Reference substance name:
- Ethyldimethylamine
- EC Number:
- 209-940-8
- EC Name:
- Ethyldimethylamine
- Cas Number:
- 598-56-1
- Molecular formula:
- C4H11N
- IUPAC Name:
- ethyldimethylamine
Constituent 1
Method
- Details on exposure:
- Secondary aluminum melting is mainly performed in sand, die, and static die-casting foundries and remelting plants. In seven Swedish foundries and two remelting plants, the exposure and area concentrations of total dust, metals, organic gases, and vapors was measured
Results and discussion
- Results:
- Dimethylethylamine concentrations up to 9 mg/m3 were measured in the cold-box process used in static die-casting and sand foundries
Applicant's summary and conclusion
- Executive summary:
Secondary aluminum melting is mainly performed in sand, die, and static die-casting foundries and remelting plants. In seven Swedish foundries and two remelting plants, the exposure and area concentrations of total dust, metals, organic gases, and vapors were determined mainly as daily, time-weighted averages (TWAs). For most combinations of jobs and agents, the exposure levels were well below the current threshold limits suggested by the American Conference of Governmental Industrial Hygienists (ACGIH). However, high exposure levels of mineral oil mist (geometric mean [GM] = 0.6 mg/m3) were observed in the die-casting process, with a maximum of 4 mg/m3. The findings were similar for total dust (GM = 5.1 mg/m3) and crystalline quartz (GM = 0.05 mg/m3) during molding operations in the sand foundries, maximum air concentrations being 31 mg/m3 and 0.22 mg/m3, respectively. Other agents which occasionally reached high exposure levels included furfuryl alcohol (up to 23 mg/m3 during furan binder use in sand foundries), aniline (up to 2.6 mg/m3 during thermal degradation of cold-box binders), anddimethylethylamine(up to 9 mg/m3) in the cold-box process used in static die-casting and sand foundries. The average aluminum exposure levels (GM = 0.043 mg/m3) were low in all foundries, individual values not exceeding 0.94 mg/m3. The exposures to metals were below 10 percent of their threshold limits. Similarly low levels were detected of polyaromatic hydrocarbons, phenol, formaldehyde, methylenebisphenyl diisocyanate, and phenylisocyanate. In the aluminum remelting plants, a few high exposure levels of total dust (GM = 1.4 mg/m3) up to 8 mg/m3 were detected in furnace workers. Aluminum and other metals were well below 10 percent of their threshold limits, with the exception of a few high concentrations of manganese, up to 0.14 mg/m3. The between-worker variability (GSDB) in the foundries for total dust, aluminum, and oil mist were on the order of 3-4. The heterogenicity of secondary aluminum melting requires assessment of a wide variety of chemical agents. For certain exposures, technical and medical monitoring programs are still needed.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.
