Registration Dossier

Administrative data

Key value for chemical safety assessment

Genetic toxicity in vitro

Description of key information

Based on the prediction done using the OECD QSAR toolbox version 3.3 with log kow as the primary descriptor and considering the five closest read across substances, gene mutation was predicted for 4-chloro-1-methylpiperidin-1-ium chloride. The study assumed the use of Salmonella typhimurium strains TA 1535, TA 1537, TA 98, TA 100 and TA 102 with S9 metabolic activation system. 4-chloro-1-methylpiperidin-1-ium chloride was predicted to not induce gene mutation in Salmonella typhimurium strains TA 1535, TA 1537, TA 98, TA 100 and TA 102 in the presence of S9 metabolic activation system and hence, according to the prediction made, it is not likely to classify as a gene mutant in vitro.

Based on the predicted result it can be concluded that the substance is considered to not toxic as per the criteria mentioned in CLP regulation.

Link to relevant study records
Reference
Endpoint:
in vitro gene mutation study in bacteria
Remarks:
Type of genotoxicity: gene mutation
Type of information:
(Q)SAR
Adequacy of study:
weight of evidence
Reliability:
2 (reliable with restrictions)
Rationale for reliability incl. deficiencies:
results derived from a valid (Q)SAR model and falling into its applicability domain, with limited documentation / justification
Justification for type of information:
Data is from OECD QSAR Toolbox version 3.3 and the supporting QMRF report has been attached
Qualifier:
according to
Guideline:
other: Refer below principle
Principles of method if other than guideline:
Prediction is done using OECD QSAR Toolbox version 3.3, 2017
GLP compliance:
not specified
Type of assay:
bacterial reverse mutation assay
Specific details on test material used for the study:
- Name of test material: 4-chloro-1-methylpiperidinium chloride
- IUPAC name: 4-chloro-1-methylpiperidin-1-ium chloride
- Molecular formula: C6H13Cl2N
- Molecular weight: 170.0817 g/mol
- Smiles : CN1CCC(CC1)Cl.Cl
- Inchl: 1S/C6H12ClN.ClH/c1-8-4-2-6(7)3-5-8;/h6H,2-5H2,1H3;1H
- Substance type: Organic
- Physical state: No data
Target gene:
Histidine
Species / strain / cell type:
S. typhimurium TA 1535, TA 1537, TA 98, TA 100 and TA 102
Details on mammalian cell type (if applicable):
Not applicable
Additional strain / cell type characteristics:
not specified
Cytokinesis block (if used):
No data
Metabolic activation:
with
Metabolic activation system:
S9 metabolic activation system
Test concentrations with justification for top dose:
No data
Vehicle / solvent:
No data
Untreated negative controls:
not specified
Negative solvent / vehicle controls:
not specified
True negative controls:
not specified
Positive controls:
not specified
Positive control substance:
not specified
Details on test system and experimental conditions:
No data
Rationale for test conditions:
No data
Evaluation criteria:
Prediction is done considering a dose dependent increase in the number of revertants/plate
Statistics:
No data
Species / strain:
S. typhimurium, other: TA 1535, TA 1537, TA 98, TA 100 and TA 102
Metabolic activation:
with
Genotoxicity:
negative
Cytotoxicity / choice of top concentrations:
not specified
Vehicle controls validity:
not specified
Untreated negative controls validity:
not specified
Positive controls validity:
not specified
Additional information on results:
No data
Remarks on result:
no mutagenic potential (based on QSAR/QSPR prediction)

The prediction was based on dataset comprised from the following descriptors: "Gene mutation"
Estimation method: Takes highest mode value from the 5 nearest neighbours
Domain  logical expression:Result: In Domain

((((((((((((("a" or "b" or "c" or "d" )  and ("e" and ( not "f") )  )  and ("g" and ( not "h") )  )  and ("i" and ( not "j") )  )  and "k" )  and "l" )  and ("m" and ( not "n") )  )  and ("o" and ( not "p") )  )  and ("q" and ( not "r") )  )  and ("s" and ( not "t") )  )  and ("u" and ( not "v") )  )  and ("w" and ( not "x") )  )  and ("y" and "z" )  )

Domain logical expression index: "a"

Referential boundary: The target chemical should be classified as Aliphatic Amines by US-EPA New Chemical Categories

Domain logical expression index: "b"

Referential boundary: The target chemical should be classified as SN2 AND SN2 >> SN2 at an sp3 Carbon atom AND SN2 >> SN2 at an sp3 Carbon atom >> Aliphatic halides by DNA binding by OECD

Domain logical expression index: "c"

Referential boundary: The target chemical should be classified as SN2 AND SN2 >> Nucleophilic substitution at sp3 carbon atom AND SN2 >> Nucleophilic substitution at sp3 carbon atom >> Alkyl halides  by Protein binding by OASIS v1.3

Domain logical expression index: "d"

Referential boundary: The target chemical should be classified as SN2 AND SN2 >> SN2 reaction at sp3 carbon atom AND SN2 >> SN2 reaction at sp3 carbon atom >> Alkyl halides by Protein binding by OECD

Domain logical expression index: "e"

Referential boundary: The target chemical should be classified as No alert found by DNA binding by OASIS v.1.3

Domain logical expression index: "f"

Referential boundary: The target chemical should be classified as AN2 OR AN2 >>  Michael-type addition, quinoid structures OR AN2 >>  Michael-type addition, quinoid structures >> Flavonoids OR AN2 >>  Michael-type addition, quinoid structures >> Quinones OR AN2 >> Carbamoylation after isocyanate formation OR AN2 >> Carbamoylation after isocyanate formation >> N-Hydroxylamines OR AN2 >> Nucleophilic addition to alpha, beta-unsaturated carbonyl compounds OR AN2 >> Nucleophilic addition to alpha, beta-unsaturated carbonyl compounds >> alpha, beta-Unsaturated Aldehydes OR AN2 >> Nucleophilic addition to metabolically formed thioketenes OR AN2 >> Nucleophilic addition to metabolically formed thioketenes >> Haloalkene Cysteine S-Conjugates OR AN2 >> Schiff base formation OR AN2 >> Schiff base formation >> alpha, beta-Unsaturated Aldehydes OR AN2 >> Schiff base formation >> Halofuranones OR AN2 >> Schiff base formation >> Polarized Haloalkene Derivatives OR AN2 >> Schiff base formation by aldehyde formed after metabolic activation OR AN2 >> Schiff base formation by aldehyde formed after metabolic activation >> Geminal Polyhaloalkane Derivatives OR AN2 >> Shiff base formation after aldehyde release OR AN2 >> Shiff base formation after aldehyde release >> Specific Acetate Esters OR AN2 >> Shiff base formation for aldehydes OR AN2 >> Shiff base formation for aldehydes >> Geminal Polyhaloalkane Derivatives OR AN2 >> Shiff base formation for aldehydes >> Haloalkane Derivatives with Labile Halogen OR AN2 >> Thioacylation via nucleophilic addition after cysteine-mediated thioketene formation OR AN2 >> Thioacylation via nucleophilic addition after cysteine-mediated thioketene formation >> Polarized Haloalkene Derivatives OR Non-covalent interaction OR Non-covalent interaction >> DNA intercalation OR Non-covalent interaction >> DNA intercalation >> Acridone, Thioxanthone, Xanthone and Phenazine Derivatives OR Non-covalent interaction >> DNA intercalation >> Aminoacridine DNA Intercalators OR Non-covalent interaction >> DNA intercalation >> Coumarins OR Non-covalent interaction >> DNA intercalation >> DNA Intercalators with Carboxamide Side Chain OR Non-covalent interaction >> DNA intercalation >> Fused-Ring Nitroaromatics OR Non-covalent interaction >> DNA intercalation >> Fused-Ring Primary Aromatic Amines OR Non-covalent interaction >> DNA intercalation >> Quinones OR Radical OR Radical >> Generation of reactive oxygen species OR Radical >> Generation of reactive oxygen species >> Thiols OR Radical >> Generation of ROS by glutathione depletion (indirect) OR Radical >> Generation of ROS by glutathione depletion (indirect) >> Haloalkanes Containing Heteroatom OR Radical >> Radical mechanism by ROS formation OR Radical >> Radical mechanism by ROS formation >> Acridone, Thioxanthone, Xanthone and Phenazine Derivatives OR Radical >> Radical mechanism by ROS formation >> Polynitroarenes OR Radical >> Radical mechanism via ROS formation (indirect) OR Radical >> Radical mechanism via ROS formation (indirect) >> Conjugated Nitro Compounds OR Radical >> Radical mechanism via ROS formation (indirect) >> Coumarins OR Radical >> Radical mechanism via ROS formation (indirect) >> Flavonoids OR Radical >> Radical mechanism via ROS formation (indirect) >> Fused-Ring Nitroaromatics OR Radical >> Radical mechanism via ROS formation (indirect) >> Fused-Ring Primary Aromatic Amines OR Radical >> Radical mechanism via ROS formation (indirect) >> Geminal Polyhaloalkane Derivatives OR Radical >> Radical mechanism via ROS formation (indirect) >> Haloalcohols OR Radical >> Radical mechanism via ROS formation (indirect) >> N-Hydroxylamines OR Radical >> Radical mechanism via ROS formation (indirect) >> Nitroaniline Derivatives OR Radical >> Radical mechanism via ROS formation (indirect) >> Nitroarenes with Other Active Groups OR Radical >> Radical mechanism via ROS formation (indirect) >> Nitrophenols, Nitrophenyl Ethers and Nitrobenzoic Acids OR Radical >> Radical mechanism via ROS formation (indirect) >> p-Substituted Mononitrobenzenes OR Radical >> Radical mechanism via ROS formation (indirect) >> Quinones OR Radical >> Radical mechanism via ROS formation (indirect) >> Single-Ring Substituted Primary Aromatic Amines OR SN1 OR SN1 >> Carbenium ion formation OR SN1 >> Carbenium ion formation >> Alpha-Haloethers OR SN1 >> Nucleophilic attack after carbenium ion formation OR SN1 >> Nucleophilic attack after carbenium ion formation >> N-Nitroso Compounds OR SN1 >> Nucleophilic attack after carbenium ion formation >> Pyrrolizidine Derivatives OR SN1 >> Nucleophilic attack after carbenium ion formation >> Specific Acetate Esters OR SN1 >> Nucleophilic attack after diazonium or carbenium ion formation OR SN1 >> Nucleophilic attack after diazonium or carbenium ion formation >> Nitroarenes with Other Active Groups OR SN1 >> Nucleophilic attack after metabolic nitrenium ion formation OR SN1 >> Nucleophilic attack after metabolic nitrenium ion formation >> Fused-Ring Primary Aromatic Amines OR SN1 >> Nucleophilic attack after metabolic nitrenium ion formation >> N-Hydroxylamines OR SN1 >> Nucleophilic attack after metabolic nitrenium ion formation >> Single-Ring Substituted Primary Aromatic Amines OR SN1 >> Nucleophilic attack after nitrenium and/or carbenium ion formation OR SN1 >> Nucleophilic attack after nitrenium and/or carbenium ion formation >> N-Nitroso Compounds OR SN1 >> Nucleophilic attack after reduction and nitrenium ion formation OR SN1 >> Nucleophilic attack after reduction and nitrenium ion formation >> Conjugated Nitro Compounds OR SN1 >> Nucleophilic attack after reduction and nitrenium ion formation >> Fused-Ring Nitroaromatics OR SN1 >> Nucleophilic attack after reduction and nitrenium ion formation >> Nitroaniline Derivatives OR SN1 >> Nucleophilic attack after reduction and nitrenium ion formation >> Nitroarenes with Other Active Groups OR SN1 >> Nucleophilic attack after reduction and nitrenium ion formation >> Nitrophenols, Nitrophenyl Ethers and Nitrobenzoic Acids OR SN1 >> Nucleophilic attack after reduction and nitrenium ion formation >> Polynitroarenes OR SN1 >> Nucleophilic attack after reduction and nitrenium ion formation >> p-Substituted Mononitrobenzenes OR SN2 OR SN2 >> Acylation OR SN2 >> Acylation >> Specific Acetate Esters OR SN2 >> Acylation involving a leaving group  OR SN2 >> Acylation involving a leaving group  >> Geminal Polyhaloalkane Derivatives OR SN2 >> Acylation involving a leaving group  >> Haloalkane Derivatives with Labile Halogen OR SN2 >> Acylation involving a leaving group after metabolic activation OR SN2 >> Acylation involving a leaving group after metabolic activation >> Geminal Polyhaloalkane Derivatives OR SN2 >> Alkylation by epoxide metabolically formed after E2 reaction OR SN2 >> Alkylation by epoxide metabolically formed after E2 reaction >> Haloalcohols OR SN2 >> Alkylation by epoxide metabolically formed after E2 reaction >> Monohaloalkanes OR SN2 >> Alkylation, direct acting epoxides and related OR SN2 >> Alkylation, direct acting epoxides and related >> Epoxides and Aziridines OR SN2 >> Alkylation, direct acting epoxides and related after cyclization OR SN2 >> Alkylation, direct acting epoxides and related after cyclization >> Nitrogen Mustards OR SN2 >> Alkylation, nucleophilic substitution at sp3-carbon atom OR SN2 >> Alkylation, nucleophilic substitution at sp3-carbon atom >> Haloalkane Derivatives with Labile Halogen OR SN2 >> Alkylation, nucleophilic substitution at sp3-carbon atom >> Monohaloalkanes OR SN2 >> Alkylation, nucleophilic substitution at sp3-carbon atom >> Sulfonates and Sulfates OR SN2 >> Direct acting epoxides formed after metabolic activation OR SN2 >> Direct acting epoxides formed after metabolic activation >> Coumarins OR SN2 >> Direct acting epoxides formed after metabolic activation >> Quinoline Derivatives OR SN2 >> Direct acylation involving a leaving group OR SN2 >> Direct acylation involving a leaving group >> Acyl Halides OR SN2 >> DNA alkylation OR SN2 >> DNA alkylation >> Alkylphosphates, Alkylthiophosphates and Alkylphosphonates OR SN2 >> DNA alkylation >> Vicinal Dihaloalkanes OR SN2 >> Internal SN2 reaction with aziridinium and/or cyclic sulfonium ion formation (enzymatic) OR SN2 >> Internal SN2 reaction with aziridinium and/or cyclic sulfonium ion formation (enzymatic) >> Vicinal Dihaloalkanes OR SN2 >> Nucleophilic substitution after carbenium ion formation OR SN2 >> Nucleophilic substitution after carbenium ion formation >> Monohaloalkanes OR SN2 >> Nucleophilic substitution at sp3 Carbon atom OR SN2 >> Nucleophilic substitution at sp3 Carbon atom >> Haloalkanes Containing Heteroatom OR SN2 >> Nucleophilic substitution at sp3 Carbon atom >> Halofuranones OR SN2 >> Nucleophilic substitution at sp3 Carbon atom >> Specific Acetate Esters OR SN2 >> Nucleophilic substitution at sp3 carbon atom after thiol (glutathione) conjugation OR SN2 >> Nucleophilic substitution at sp3 carbon atom after thiol (glutathione) conjugation >> Geminal Polyhaloalkane Derivatives OR SN2 >> SN2 at an activated carbon atom OR SN2 >> SN2 at an activated carbon atom >> Quinoline Derivatives OR SN2 >> SN2 at sp3 and activated sp2 carbon atom OR SN2 >> SN2 at sp3 and activated sp2 carbon atom >> Polarized Haloalkene Derivatives OR SN2 >> SN2 at sp3-carbon atom OR SN2 >> SN2 at sp3-carbon atom >> Alpha-Haloethers OR SN2 >> SN2 attack on activated carbon Csp3 or Csp2 OR SN2 >> SN2 attack on activated carbon Csp3 or Csp2 >> Nitroarenes with Other Active Groups by DNA binding by OASIS v.1.3

Domain logical expression index: "g"

Referential boundary: The target chemical should be classified as Non binder, without OH or NH2 group by Estrogen Receptor Binding

Domain logical expression index: "h"

Referential boundary: The target chemical should be classified as Moderate binder, NH2 group OR Moderate binder, OH grooup OR Non binder, impaired OH or NH2 group OR Non binder, MW>500 OR Non binder, non cyclic structure OR Strong binder, NH2 group OR Strong binder, OH group OR Weak binder, NH2 group OR Weak binder, OH group by Estrogen Receptor Binding

Domain logical expression index: "i"

Referential boundary: The target chemical should be classified as Not possible to classify according to these rules (GSH) by Protein binding potency

Domain logical expression index: "j"

Referential boundary: The target chemical should be classified as Extremely reactive (GSH) OR Extremely reactive (GSH) >> alpha-bromo and chloro alkyl/aryl ketones (SN2) OR Highly reactive (GSH) OR Highly reactive (GSH) >> 2-Iodoacetamides and 2-Bromoacetamides (SN2) OR Highly reactive (GSH) >> Furamates (MA) OR Highly reactive (GSH) >> Miscellaneous alpha-halogenated ketones (SN2) OR Moderately reactive (GSH) OR Moderately reactive (GSH) >> 2-Chloroacetamides (SN2) OR Moderately reactive (GSH) >> 2-Vinyl carboxamides (MA) OR Moderately reactive (GSH) >> Substituted 1-Alken-3-ones (MA) OR Slightly reactive (GSH) OR Slightly reactive (GSH) >> Substituted haloacetamides (SN2) by Protein binding potency

Domain logical expression index: "k"

Referential boundary: The target chemical should be classified as No superfragment by Superfragments ONLY

Domain logical expression index: "l"

Referential boundary: The target chemical should be classified as Bioavailable by Lipinski Rule Oasis ONLY

Domain logical expression index: "m"

Referential boundary: The target chemical should be classified as Group 14 - Carbon C AND Group 15 - Nitrogen N AND Group 17 - Halogens Cl AND Group 17 - Halogens F,Cl,Br,I,At by Chemical elements

Domain logical expression index: "n"

Referential boundary: The target chemical should be classified as Group 16 - Oxygen O OR Group 16 - Sulfur S OR Group 17 - Halogens Br OR Group 17 - Halogens F by Chemical elements

Domain logical expression index: "o"

Referential boundary: The target chemical should be classified as Inclusion rules not met by Skin irritation/corrosion Inclusion rules by BfR

Domain logical expression index: "p"

Referential boundary: The target chemical should be classified as Halogenated alkanes  OR Primary and secondary aliphatic amines by Skin irritation/corrosion Inclusion rules by BfR

Domain logical expression index: "q"

Referential boundary: The target chemical should be classified as No alert found by Protein binding alerts for skin sensitization by OASIS v1.3

Domain logical expression index: "r"

Referential boundary: The target chemical should be classified as SN2 OR SN2 >> Nucleophilic substitution on benzilyc carbon atom OR SN2 >> Nucleophilic substitution on benzilyc carbon atom >> alpha-Activated benzyls  by Protein binding alerts for skin sensitization by OASIS v1.3

Domain logical expression index: "s"

Referential boundary: The target chemical should be classified as Not classified by Oncologic Primary Classification

Domain logical expression index: "t"

Referential boundary: The target chemical should be classified as Aromatic Amine Type Compounds by Oncologic Primary Classification

Domain logical expression index: "u"

Referential boundary: The target chemical should be classified as Inclusion rules not met by Eye irritation/corrosion Inclusion rules by BfR

Domain logical expression index: "v"

Referential boundary: The target chemical should be classified as Derivatives of alpha amino benzene by Eye irritation/corrosion Inclusion rules by BfR

Domain logical expression index: "w"

Referential boundary: The target chemical should be classified as Not known precedent reproductive and developmental toxic potential by DART scheme v.1.0

Domain logical expression index: "x"

Referential boundary: The target chemical should be classified as Arylethanamine-like derivatives (11a) OR Cyclizine-like derivatives (11b) OR Known precedent reproductive and developmental toxic potential OR Piperazine-, dioxane-, morpholine-, tetrahydrothiopyran-like derivatives and cyclohexanamine (17c) OR Piperidine and pyrrolidine alkaloid derivatives (4a-3) OR Tricyclic compounds of two aryl ring fused cycles, heterocycles with alkyl amine (14c) by DART scheme v.1.0

Domain logical expression index: "y"

Parametric boundary:The target chemical should have a value of log Kow which is >= -1.57

Domain logical expression index: "z"

Parametric boundary:The target chemical should have a value of log Kow which is <= -0.379

Conclusions:
4-chloro-1-methylpiperidin-1-ium chloride was predicted to not induce gene mutation in Salmonella typhimurium strains TA 1535, TA 1537, TA 98, TA 100 and TA 102 in the presence of S9 metabolic activation system and hence, according to the prediction made, it is not likely to classify as a gene mutant in vitro.
Executive summary:

Based on the prediction done using the OECD QSAR toolbox version 3.3 with log kow as the primary descriptor and considering the five closest read across substances, gene mutation was predicted for 4-chloro-1-methylpiperidin-1-ium chloride. The study assumed the use of Salmonella typhimurium strains TA 1535, TA 1537, TA 98, TA 100 and TA 102 with S9 metabolic activation system. 4-chloro-1-methylpiperidin-1-ium chloride was predicted to not induce gene mutation in Salmonella typhimurium strains TA 1535, TA 1537, TA 98, TA 100 and TA 102 in the presence of S9 metabolic activation system and hence, according to the prediction made, it is not likely to classify as a gene mutant in vitro.

Based on the predicted result it can be concluded that the substance is considered to not toxic as per the criteria mentioned in CLP regulation.

Endpoint conclusion
Endpoint conclusion:
no adverse effect observed (negative)

Genetic toxicity in vivo

Endpoint conclusion
Endpoint conclusion:
no adverse effect observed (negative)

Additional information

Gene mutation in vitro:

Prediction model based estimation for the target chemical and data from read across chemicals have been reviewed and summarized to determine the mutagenic nature of 4-chloro-1-methylpiperidin-1-ium chloride. The studies are as mentioned below:

Based on the prediction done using the OECD QSAR toolbox version 3.3 with log kow as the primary descriptor and considering the five closest read across substances, gene mutation was predicted for 4-chloro-1-methylpiperidin-1-ium chloride. The study assumed the use of Salmonella typhimurium strains TA 1535, TA 1537, TA 98, TA 100 and TA 102 with and without S9 metabolic activation system. 4-chloro-1-methylpiperidin-1-ium chloride was predicted to not induce gene mutation in Salmonella typhimurium strains TA 1535, TA 1537, TA 98, TA 100 and TA 102 in the presence and absence of S9 metabolic activation system and hence, according to the prediction made, it is not likely to classify as a gene mutant in vitro.

Bacterial reverse mutation test (J-check, 2017) was performed to determine the mutagenic nature of 1-Methylpiperazine (RA CAS no 109 -01 -3; IUPAC name: 1 -methyl-diethylenediamine). The study was performed as per the preincubation protocol using S. typhimurium TA 1535, TA 1537, TA 98, TA100 and E. coli WP2 uvr A pKM 101 in the presence and absence of S9 metabolic activation system. The test chemical was dissolved in water and used at dose levels of 2.29 - 5000 microg/plate with and without S9. 1-Methylpiperazine did not induce gene mutation in S. typhimurium TA 1535, TA 1537, TA 98 and E. coli WP2 uvr A pKM 101 in the presence and absence of S9 metabolic activation system. It however induced gene mutation in Salmonella typhimurium strain TA100 in the presence and absence of S9 activation system. The details necessary to justify the positive nature is not available and hence the test chemical is not likely to classify as a gene mutant in vitro.

In another bacterial reverse mutation test (J-check, 2017) was performed to determine the mutagenic nature of Chlorocyclohexane (RA CAS no 542 -18 -7; IUPAC name: Chlorocylcohexane). The study was performed as per the preincubation protocol using S. typhimurium TA 1535, TA 1537, TA 98, TA100 and E. coli WP2 in the presence and absence of S9 metabolic activation system. The test chemical was dissolved in DMSO and used at dose levels of 2.44, 4.88, 9.77, 19.5, 39.1, 78.1, 156 μg/plate (TA100, TA1535 strains), 9.77, 19.5, 39.1, 78.1, 156, 313 μg/plate (TA98, TA1537, WP2uvrA/pKM101 strains) without S9 and 9.77, 19.5, 39.1, 78.1, 156, 313 μg/plate (TA100, TA1535, TA98, TA1537 strains), 9.77, 19.5, 39.1, 78.1, 156, 313, 625 μg/plate (WP2uvrA/pKM101 strain) with S9. The plates were preincubated for 20 mins at 37°C and the exposure duration was 48 hrs. The plates were observed for dose-related and reproducible doubling of the mean number of revertant colonies per plate than that of the negative control. Chlorocyclohexane did not induce gene mutation in S. typhimurium TA 1535, TA 1537, TA 98, TA100 and E. coli WP2 in the presence and absence of S9 metabolic activation system and hence it is not likely to classify as a gene mutant in vitro.

Based on the data available for the target chemical and its read across, 4-chloro-1-methylpiperidin-1-ium chloride dose not exhibit gene mutation in vitro. Hence the test chemical is not likely to classify as a gene mutant in vitro as per the criteria mentioned in CLP regulation.

Justification for classification or non-classification

Based on the data available for the target chemical and its read across, 4-chloro-1-methylpiperidin-1-ium chloride dose not exhibit gene mutation in vitro. Hence the test chemical is not likely to classify as a gene mutant in vitro as per the criteria mentioned in CLP regulation.