Registration Dossier

Data platform availability banner - registered substances factsheets

Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.

The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.

Diss Factsheets

Administrative data

Description of key information

LD50 was considered to be 3267.0 mg/kg bw when Sprague-Dawley male and female rats were orally exposed with 1,3-thiazolidine-2,4-dione(2295-31-0).

Key value for chemical safety assessment

Acute toxicity: via oral route

Link to relevant study records
Reference
Endpoint:
acute toxicity: oral
Type of information:
(Q)SAR
Adequacy of study:
weight of evidence
Reliability:
2 (reliable with restrictions)
Rationale for reliability incl. deficiencies:
results derived from a valid (Q)SAR model and falling into its applicability domain, with limited documentation / justification
Justification for type of information:
Data is from OECD QSAR toolbox v3.3 and the QMRF report has been attached.
Qualifier:
equivalent or similar to guideline
Guideline:
other: As mention below
Principles of method if other than guideline:
Prediction was done using OECD QSAR toolbox v3.3
GLP compliance:
not specified
Test type:
other: not specified
Limit test:
yes
Specific details on test material used for the study:
- Name of test material (as cited in study report): 2,4-Thiazolidinedione
- Molecular formula: C3H3NO2S
- Molecular weight: 117.1277 g/mol
- Substance type: organic
- Physical state: Solid
- Smiles notation: C1C(=O)NC(=O)S1
- InChl: 1S/C3H3NO2S/c5-2-1-7-3(6)4-2/h1H2,(H,4,5,6)
Species:
rat
Strain:
Sprague-Dawley
Sex:
male/female
Details on test animals or test system and environmental conditions:
No data available
Route of administration:
oral: gavage
Vehicle:
not specified
Details on oral exposure:
No data available
Doses:
3267 mg/kg
No. of animals per sex per dose:
5
Control animals:
no
Details on study design:
No data available
Statistics:
No data available
Sex:
male/female
Dose descriptor:
LD50
Effect level:
3 267 mg/kg bw
Based on:
test mat.
Remarks on result:
other: 50 % mortality observed
Mortality:
50% mortality was observed
Clinical signs:
other: No data available
Gross pathology:
No data available
Other findings:
No data available

The prediction was based on dataset comprised from the following descriptors: LD50
Estimation method: Takes average value from the 5 nearest neighbours
Domain  logical expression:Result: In Domain

(((((((((("a" or "b" or "c" )  and ("d" and ( not "e") )  )  and ("f" and ( not "g") )  )  and ("h" and ( not "i") )  )  and ("j" and ( not "k") )  )  and "l" )  and ("m" and ( not "n") )  )  and ("o" and ( not "p") )  )  and "q" )  and ("r" and "s" )  )

Domain logical expression index: "a"

Referential boundary: The target chemical should be classified as Acylation OR Acylation >> P450 Mediated Activation to Isocyanates or Isothiocyanates OR Acylation >> P450 Mediated Activation to Isocyanates or Isothiocyanates >> Thiazolidinediones by DNA binding by OECD

Domain logical expression index: "b"

Referential boundary: The target chemical should be classified as Acylation AND Acylation >> Ester aminolysis AND Acylation >> Ester aminolysis >> Amides by Protein binding by OASIS v1.3

Domain logical expression index: "c"

Referential boundary: The target chemical should be classified as Acylation AND Acylation >> Direct Acylation Involving a Leaving group AND Acylation >> Direct Acylation Involving a Leaving group >> Acetates by Protein binding by OECD

Domain logical expression index: "d"

Referential boundary: The target chemical should be classified as No alert found by DNA binding by OASIS v.1.3

Domain logical expression index: "e"

Referential boundary: The target chemical should be classified as AN2 OR AN2 >> Carbamoylation after isocyanate formation OR AN2 >> Carbamoylation after isocyanate formation >> N-Hydroxylamines OR AN2 >> Michael-type addition on alpha, beta-unsaturated carbonyl compounds OR AN2 >> Michael-type addition on alpha, beta-unsaturated carbonyl compounds >> Four- and Five-Membered Lactones OR AN2 >> Schiff base formation OR AN2 >> Schiff base formation >> Dicarbonyl compounds OR AN2 >> Schiff base formation by aldehyde formed after metabolic activation OR AN2 >> Schiff base formation by aldehyde formed after metabolic activation >> Geminal Polyhaloalkane Derivatives OR AN2 >> Shiff base formation after aldehyde release OR AN2 >> Shiff base formation after aldehyde release >> Specific Acetate Esters OR AN2 >> Shiff base formation for aldehydes OR AN2 >> Shiff base formation for aldehydes >> Geminal Polyhaloalkane Derivatives OR Non-covalent interaction OR Non-covalent interaction >> DNA intercalation OR Non-covalent interaction >> DNA intercalation >> Coumarins OR Non-covalent interaction >> DNA intercalation >> DNA Intercalators with Carboxamide Side Chain OR Non-specific OR Non-specific >> Incorporation into DNA/RNA, due to structural analogy with  nucleoside bases    OR Non-specific >> Incorporation into DNA/RNA, due to structural analogy with  nucleoside bases    >> Specific Imine and Thione Derivatives OR Radical OR Radical >> Generation of ROS by glutathione depletion (indirect) OR Radical >> Generation of ROS by glutathione depletion (indirect) >> Haloalkanes Containing Heteroatom OR Radical >> Radical mechanism via ROS formation (indirect) OR Radical >> Radical mechanism via ROS formation (indirect) >> Coumarins OR Radical >> Radical mechanism via ROS formation (indirect) >> Geminal Polyhaloalkane Derivatives OR Radical >> Radical mechanism via ROS formation (indirect) >> N-Hydroxylamines OR Radical >> Radical mechanism via ROS formation (indirect) >> Nitro Azoarenes OR Radical >> Radical mechanism via ROS formation (indirect) >> Nitroarenes with Other Active Groups OR Radical >> Radical mechanism via ROS formation (indirect) >> Nitrophenols, Nitrophenyl Ethers and Nitrobenzoic Acids OR Radical >> Radical mechanism via ROS formation (indirect) >> p-Substituted Mononitrobenzenes OR Radical >> Radical mechanism via ROS formation (indirect) >> Single-Ring Substituted Primary Aromatic Amines OR Radical >> Radical mechanism via ROS formation (indirect) >> Specific Imine and Thione Derivatives OR SN1 OR SN1 >> Alkylation after metabolically formed carbenium ion species OR SN1 >> Alkylation after metabolically formed carbenium ion species >> Polycyclic Aromatic Hydrocarbon Derivatives OR SN1 >> Carbenium ion formation OR SN1 >> Carbenium ion formation >> Alpha-Haloethers OR SN1 >> Nucleophilic attack after carbenium ion formation OR SN1 >> Nucleophilic attack after carbenium ion formation >> Specific Acetate Esters OR SN1 >> Nucleophilic attack after diazonium or carbenium ion formation OR SN1 >> Nucleophilic attack after diazonium or carbenium ion formation >> Nitroarenes with Other Active Groups OR SN1 >> Nucleophilic attack after metabolic nitrenium ion formation OR SN1 >> Nucleophilic attack after metabolic nitrenium ion formation >> N-Hydroxylamines OR SN1 >> Nucleophilic attack after metabolic nitrenium ion formation >> Single-Ring Substituted Primary Aromatic Amines OR SN1 >> Nucleophilic attack after reduction and nitrenium ion formation OR SN1 >> Nucleophilic attack after reduction and nitrenium ion formation >> Nitro Azoarenes OR SN1 >> Nucleophilic attack after reduction and nitrenium ion formation >> Nitroarenes with Other Active Groups OR SN1 >> Nucleophilic attack after reduction and nitrenium ion formation >> Nitrophenols, Nitrophenyl Ethers and Nitrobenzoic Acids OR SN1 >> Nucleophilic attack after reduction and nitrenium ion formation >> p-Substituted Mononitrobenzenes OR SN1 >> Nucleophilic substitution on diazonium ions OR SN1 >> Nucleophilic substitution on diazonium ions >> Specific Imine and Thione Derivatives OR SN2 OR SN2 >> Acylation OR SN2 >> Acylation >> Specific Acetate Esters OR SN2 >> Acylation involving a leaving group  OR SN2 >> Acylation involving a leaving group  >> Geminal Polyhaloalkane Derivatives OR SN2 >> Acylation involving a leaving group after metabolic activation OR SN2 >> Acylation involving a leaving group after metabolic activation >> Geminal Polyhaloalkane Derivatives OR SN2 >> Alkylation, direct acting epoxides and related OR SN2 >> Alkylation, direct acting epoxides and related >> Epoxides and Aziridines OR SN2 >> Alkylation, direct acting epoxides and related after P450-mediated metabolic activation OR SN2 >> Alkylation, direct acting epoxides and related after P450-mediated metabolic activation >> Polycyclic Aromatic Hydrocarbon Derivatives OR SN2 >> Alkylation, nucleophilic substitution at sp3-carbon atom OR SN2 >> Alkylation, nucleophilic substitution at sp3-carbon atom >> Sulfonates and Sulfates OR SN2 >> Alkylation, ring opening SN2 reaction OR SN2 >> Alkylation, ring opening SN2 reaction >> Four- and Five-Membered Lactones OR SN2 >> Direct acting epoxides formed after metabolic activation OR SN2 >> Direct acting epoxides formed after metabolic activation >> Coumarins OR SN2 >> Direct acting epoxides formed after metabolic activation >> Quinoline Derivatives OR SN2 >> Direct acylation involving a leaving group OR SN2 >> Direct acylation involving a leaving group >> Acyl Halides OR SN2 >> DNA alkylation OR SN2 >> DNA alkylation >> Alkylphosphates, Alkylthiophosphates and Alkylphosphonates OR SN2 >> DNA alkylation >> Vicinal Dihaloalkanes OR SN2 >> Internal SN2 reaction with aziridinium and/or cyclic sulfonium ion formation (enzymatic) OR SN2 >> Internal SN2 reaction with aziridinium and/or cyclic sulfonium ion formation (enzymatic) >> Vicinal Dihaloalkanes OR SN2 >> Nucleophilic substitution at sp3 Carbon atom OR SN2 >> Nucleophilic substitution at sp3 Carbon atom >> Haloalkanes Containing Heteroatom OR SN2 >> Nucleophilic substitution at sp3 Carbon atom >> Specific Acetate Esters OR SN2 >> Nucleophilic substitution at sp3 carbon atom after thiol (glutathione) conjugation OR SN2 >> Nucleophilic substitution at sp3 carbon atom after thiol (glutathione) conjugation >> Geminal Polyhaloalkane Derivatives OR SN2 >> SN2 at an activated carbon atom OR SN2 >> SN2 at an activated carbon atom >> Quinoline Derivatives OR SN2 >> SN2 at sp3-carbon atom OR SN2 >> SN2 at sp3-carbon atom >> Alpha-Haloethers OR SN2 >> SN2 at sulfur atom OR SN2 >> SN2 at sulfur atom >> Sulfonyl Halides OR SN2 >> SN2 attack on activated carbon Csp3 or Csp2 OR SN2 >> SN2 attack on activated carbon Csp3 or Csp2 >> Nitroarenes with Other Active Groups by DNA binding by OASIS v.1.3

Domain logical expression index: "f"

Referential boundary: The target chemical should be classified as Non binder, without OH or NH2 group by Estrogen Receptor Binding

Domain logical expression index: "g"

Referential boundary: The target chemical should be classified as Moderate binder, OH grooup OR Non binder, impaired OH or NH2 group OR Non binder, MW>500 OR Non binder, non cyclic structure OR Strong binder, OH group OR Very strong binder, OH group OR Weak binder, NH2 group OR Weak binder, OH group by Estrogen Receptor Binding

Domain logical expression index: "h"

Referential boundary: The target chemical should be classified as Acylation AND Acylation >> Ester aminolysis AND Acylation >> Ester aminolysis >> Amides by Protein binding by OASIS v1.3

Domain logical expression index: "i"

Referential boundary: The target chemical should be classified as Acylation >> Acyl transfer via nucleophilic addition reaction OR Acylation >> Acyl transfer via nucleophilic addition reaction >> Isocyanates, Isothiocyanates  OR Acylation >> Direct acylation involving a leaving group OR Acylation >> Direct acylation involving a leaving group >> (Thio)Acyl and (thio)carbamoyl halides and cyanides  OR Acylation >> Direct acylation involving a leaving group >> Anhydrides (sulphur analogues of anhydrides)  OR Acylation >> Direct acylation involving a leaving group >> Azlactones and unsaturated lactone derivatives  OR Acylation >> Direct acylation involving a leaving group >> Carbamates  OR Acylation >> Ester aminolysis or thiolysis OR Acylation >> Ester aminolysis or thiolysis >> Activated aryl esters  OR Acylation >> Ring opening acylation OR Acylation >> Ring opening acylation >> Active cyclic agents  OR Acylation >> Ring opening acylation >> beta-Lactams  OR Michael Addition OR Michael Addition >> Michael addition on conjugated systems with electron withdrawing group OR Michael Addition >> Michael addition on conjugated systems with electron withdrawing group >> alpha,beta-Carbonyl compounds with polarized double bonds  OR Michael Addition >> Michael addition on conjugated systems with electron withdrawing group >> Conjugated systems with electron withdrawing groups  OR Michael Addition >> Quinoide type compounds OR Michael Addition >> Quinoide type compounds >> Quinone methide(s)/imines; Quinoide oxime structure; Nitroquinones, Naphthoquinone(s)/imines  OR No alert found OR Nucleophilic addition OR Nucleophilic addition >> Addition to carbon-hetero double bonds OR Nucleophilic addition >> Addition to carbon-hetero double bonds >> Ketones OR Schiff base formation OR Schiff base formation >> Pyrazolones and Pyrazolidinones derivatives OR Schiff base formation >> Pyrazolones and Pyrazolidinones derivatives >> Pyrazolones and Pyrazolidinones  OR SN2 OR SN2 >> Interchange reaction with sulphur containing compounds OR SN2 >> Interchange reaction with sulphur containing compounds >> Thiols and disulfide compounds  OR SN2 >> Nucleophilic substitution at sp3 carbon atom OR SN2 >> Nucleophilic substitution at sp3 carbon atom >> Alkyl halides  OR SN2 >> Nucleophilic substitution at sp3 carbon atom >> alpha-Activated haloalkanes  OR SN2 >> SN2 Reaction at a sp3 carbon atom OR SN2 >> SN2 Reaction at a sp3 carbon atom >> Activated alkyl esters and thioesters  OR SNAr OR SNAr >> Nucleophilic aromatic substitution on activated aryl and heteroaryl compounds OR SNAr >> Nucleophilic aromatic substitution on activated aryl and heteroaryl compounds >> Activated aryl and heteroaryl compounds by Protein binding by OASIS v1.3

Domain logical expression index: "j"

Referential boundary: The target chemical should be classified as Acylation AND Acylation >> Direct Acylation Involving a Leaving group AND Acylation >> Direct Acylation Involving a Leaving group >> Acetates by Protein binding by OECD

Domain logical expression index: "k"

Referential boundary: The target chemical should be classified as No alert found OR SN2 OR SN2 >> SN2 reaction at sp3 carbon atom OR SN2 >> SN2 reaction at sp3 carbon atom >> Alkyl diazo by Protein binding by OECD

Domain logical expression index: "l"

Referential boundary: The target chemical should be classified as No superfragment by Superfragments ONLY

Domain logical expression index: "m"

Referential boundary: The target chemical should be classified as Non-Metals by Groups of elements

Domain logical expression index: "n"

Referential boundary: The target chemical should be classified as Halogens by Groups of elements

Domain logical expression index: "o"

Referential boundary: The target chemical should be classified as Stable form by Tautomers unstable

Domain logical expression index: "p"

Referential boundary: The target chemical should be classified as Conjugated ketoamine(scy) - 1,5-H shift OR Keto form (5-membered heteroarenes) - 1,3-H shift by Tautomers unstable

Domain logical expression index: "q"

Similarity boundary:Target: O=C1CSC(=O)N1
Threshold=10%,
Dice(Atom centered fragments)
Atom type; Count H attached; Hybridization

Domain logical expression index: "r"

Parametric boundary:The target chemical should have a value of log Kow which is >= -1.25

Domain logical expression index: "s"

Parametric boundary:The target chemical should have a value of log Kow which is <= 1.16

Interpretation of results:
Category 5 based on GHS criteria
Conclusions:
LD50 was estimated to be 3267 mg/kg bw when rats were orally exposed with 1,3-thiazolidine-2,4-dione.
Executive summary:

In a prediction done by SSS (2017) using the OECD QSAR toolbox with log kow as the primary descriptor, the acute oral toxicity was estimated for 1,3-thiazolidine-2,4-dione. The LD50 was estimated to be 3267 mg/kg bw when rats were orally exposed with 1,3-thiazolidine-2,4-dione.

Endpoint conclusion
Endpoint conclusion:
no adverse effect observed
Dose descriptor:
LD50
Value:
3 267 mg/kg bw
Quality of whole database:
Data is K2 and has been obtained from OECD QSAR toolbox v3.3

Acute toxicity: via inhalation route

Endpoint conclusion
Endpoint conclusion:
no study available

Acute toxicity: via dermal route

Endpoint conclusion
Endpoint conclusion:
no study available

Additional information

Acute oral toxicity:

In different studies,1,3-thiazolidine-2,4-dione has been investigated for acute oral toxicity to a greater or lesser extent. Often are the studies based on in vivo experiments and estimated data in rodents, i.e. most commonly in rats for1,3-thiazolidine-2,4-dione. The predicted data using the OECD QSAR toolbox has also been compared with the experimental studies.

 

In a prediction done by SSS (2017) using the OECD QSAR toolbox with log kow as the primary descriptor, the acute oral toxicity was estimated for1,3-thiazolidine-2,4-dione. The LD50 was estimated to be 3267mg/kg bw when Sprague-Dawley male and female rats were orally exposed with 1,3-thiazolidine-2,4-dione(2295-31-0).

In another prediction done by SSS (2017) using the Danish QSAR with log kow as the primary descriptor, the acute oral toxicity was estimated for1,3-thiazolidine-2,4-dione. The LD50 was estimated to be 2100 mg/kg bw in rats (Reliability index: 0.54) exposed with1,3-thiazolidine-2,4-dione

Also it is further supported by experimental study given by U.S. National Library of Medicine (ChemIDplus A TOXNET Database, 2017) on structurally similar read across substance Barbituric acid (67-52-7),rats were treated with Barbituric acid orally. No mortality was observed in treated rats at 5000 mg/kg bw. Therefore, LD50 was considered to be >5000 mg/kg bw when rats were treated with Barbituric acid (67-52-7)orally.   

 

Also it is further supported by experimental study given by U.S. National Library of Medicine (ChemIDplus A TOXNET Database, 2017) on structurally similar read across substance 5,5-dimethylimidazolidine-2,4-dione (77-71-4),rats were treated with 5,5-dimethylimidazolidine-2,4-dioneorally. 50% mortality was observed in treated rats at 7800 mg/kg bw. Therefore, LD50 was considered to be 7800 mg/kg bw when rats were treated with5,5-dimethylimidazolidine-2,4-dione (77-71-4)orally.   

 

Also it is further supported by experimental study given by U.S. National Library of Medicine (ChemIDplus A TOXNET Database, 2017) on structurally similar read across substance2-thioxodihydropyrimidine-4,6(1H,5H)-dione (105-17-6)rats were treated with2-thioxodihydropyrimidine-4,6(1H,5H)-dione orally. No mortality was observed in treated rats at 5000 mg/kg bw. Therefore, LD50 was considered to be >5000 mg/kg bw when rats were treated with 2-thioxodihydropyrimidine-4,6(1H,5H)-dione (105-17-6) orally.   

 

Thus, based on the above studies and predictions on1,3-thiazolidine-2,4-dione(2295-31-0) and its read across substances, it can be concluded that LD50 value is above 3267.0 mg/kg bw. Thus, comparing this value with the criteria of CLP regulation1,3-thiazolidine-2,4-dione(2295-31-0) can be “Not classified ” for acute oral toxicity.

 

 

Justification for classification or non-classification

Based on the above studies and predictions on1,3-thiazolidine-2,4-dione(2295-31-0)and its read across substances, it can be concluded that LD50 value is above 3267.0 mg/kg bw. Thus, comparing this value with the criteria of CLP regulation1,3-thiazolidine-2,4-dione(2295-31-0) can be “Not classified ” for acute oral toxicity.