Registration Dossier

Data platform availability banner - registered substances factsheets

Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.

The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.

Diss Factsheets

Environmental fate & pathways

Endpoint summary

Administrative data

Description of key information



Phototransformation in air


If released to air, a vapor pressure of  0.00316mm Hg at 25 deg C (0.00316mm Hg is equivalent to vapour pressure of 0.421Pa ) indicates S-allyl O-pentyl dithiocarbonate will exist solely as a vapor in the atmosphere. Vapor-phase S-allyl O-pentyl dithiocarbonate will be degraded in the atmosphere by reaction with photochemically-produced hydroxyl radicals; the half-life for this reaction in air is estimated to be 0.218 days, calculated from its rate constant of 49.0430 E-12 cm3/molecule-sec at 25 deg. S-allyl O-pentyl dithiocarbonate do not contain chromophores that absorb at wavelengths >290 nm and therefore S-allyl O-pentyl dithiocarbonate is not expected to be susceptible to direct photolysis by sunlight.

 Using the AOPWIN QSAR model, the photochemical degradation rate of S-allyl O-pentyl dithiocarbonate in the atmosphere is 49.0430E-12cm3/molecule-sec, with a resultant predicted half live of 2.617Hrs(0.218 Days (12-hr day; 1.5E6 OH/cm3))

 OVERALL OH Rate Constant = 49.0430 E-12 cm3/molecule-sec

  HALF-LIFE =    0.218 Days (12-hr day; 1.5E6 OH/cm3)

  HALF-LIFE =    2.617 Hrs


Phototransformation in water

It is not applicable for a compound wich is  slightly soluble or almost insoluble

 Phototransformation in soil

If released to soil, S-allyl O-pentyl dithiocarbonate  is expected to have  high mobility based upon an estimated Koc of 153.4 . Volatilization from moist soil surfaces is not expected to be an important fate process.  Therefore testing for Phototransformation in soils does not need to be performed.  




Hydrolysis is a chemical reaction during which molecules of water (H2O) are split into hydrogen cations (H+, conventionally referred to as protons) and hydroxide anions (OH−) in the process of a chemical mechanism).

 The hydrolysis of the substance was less than 10% over the 5 days, so a definitive test was not performed. Based on these results, S-allyl O-pentyl dithiocarbonate  was hydrolytically stable (half life > 1 year) specified by the OECD Guidelines .


Additional information