Registration Dossier

Toxicological information

Genetic toxicity: in vitro

Currently viewing:

Administrative data

Endpoint:
in vitro gene mutation study in bacteria
Type of information:
experimental study
Adequacy of study:
key study
Reliability:
1 (reliable without restriction)

Data source

Reference
Reference Type:
study report
Title:
Unnamed
Year:
2016
Report Date:
2016

Materials and methods

Test guideline
Qualifier:
according to
Guideline:
OECD Guideline 471 (Bacterial Reverse Mutation Assay)
Deviations:
no
GLP compliance:
yes
Type of assay:
bacterial reverse mutation assay

Test material

Reference
Name:
Unnamed
Type:
Constituent
Specific details on test material used for the study:
Identification: Pivalic Acid
Batch No.: PH5D0530
CAS No.: 75-98-9
Purity: 99.5%
Molecular Weight: 102.1317 g/mol
Description: Clear colorless solid
Storage Conditions: Room temperature, protected from light

Method

Species / strain
Species / strain / cell type:
S. typhimurium TA 1535, TA 1537, TA 98, TA 100 and E. coli WP2
Metabolic activation:
with and without
Test concentrations with justification for top dose:
50.0, 150, 500, 1500 and 5000 μg per plate
Vehicle / solvent:
Water
Controls
Untreated negative controls:
no
Negative solvent / vehicle controls:
yes
True negative controls:
no
Positive controls:
yes
Positive control substance:
9-aminoacridine
2-nitrofluorene
sodium azide
methylmethanesulfonate
other: 2-aminoanthracene
Details on test system and experimental conditions:
The tester strains used were the Salmonella typhimurium histidine auxotrophs TA98, TA100, TA1535 and TA1537 as described by Ames et al. (1975) and Escherichia coli WP2 uvrA as described by Green and Muriel (1976).
Tester strains TA98 and TA1537 are reverted from histidine dependence (auxotrophy) to histidine independence (prototrophy) by frameshift mutagens. Tester strain TA1535 is reverted by mutagens that cause basepair substitutions. Tester strain TA100 is reverted by mutagens that cause both frameshift and basepair substitution mutations. Specificity of the reversion mechanism in E. coli is sensitive to basepair substitution mutations, rather than frameshift mutations (Green and Muriel, 1976).
Salmonella tester strains were derived from Dr. Bruce Ames’ cultures; E. coli tester strains were from the National Collection of Industrial and Marine Bacteria, Aberdeen, Scotland.
Evaluation criteria:
The following criteria must be met for the mutagenicity assay to be considered valid:
All Salmonella tester strain cultures must demonstrate the presence of the deep rough mutation (rfa) and the deletion in the uvrB gene. Cultures of tester strains TA98 and TA100 must demonstrate the presence of the pKM101 plasmid R-factor. All WP2 uvrA cultures must demonstrate the deletion in the uvrA gene.
All cultures must demonstrate the characteristic mean number of spontaneous revertants in the vehicle controls as follows (inclusive): TA98, 10 - 50; TA100, 80 - 240; TA1535, 5 - 45; TA1537, 3 - 21; WP2 uvrA, 10 - 60.
BioReliance Study No. AE59KE.502REACH.BTL 14
To ensure that appropriate numbers of bacteria are plated, tester strain culture titers must be greater than or equal to 0.3x109 cells/mL.
The mean of each positive control must exhibit at least a 3.0-fold increase in the number of revertants over the mean value of the respective vehicle control.
A minimum of three non-toxic dose levels is required to evaluate assay data. A dose level is considered toxic if one or both of the following criteria are met: (1) A >50 % reduction in the mean number of revertants per plate as compared to the mean vehicle control value. This reduction must be accompanied by an abrupt dose-dependent drop in the revertant count. (2) At least a moderate reduction in the background lawn (background code 3, 4 or 5).

Results and discussion

Test resultsopen allclose all
Key result
Species / strain:
S. typhimurium TA 1535
Metabolic activation:
with and without
Genotoxicity:
negative
Cytotoxicity / choice of top concentrations:
no cytotoxicity nor precipitates, but tested up to recommended limit concentrations
Vehicle controls validity:
valid
Untreated negative controls validity:
not applicable
Positive controls validity:
valid
Key result
Species / strain:
S. typhimurium TA 98
Metabolic activation:
with and without
Genotoxicity:
negative
Cytotoxicity / choice of top concentrations:
no cytotoxicity nor precipitates, but tested up to recommended limit concentrations
Vehicle controls validity:
valid
Untreated negative controls validity:
not applicable
Positive controls validity:
valid
Key result
Species / strain:
S. typhimurium TA 1537
Metabolic activation:
with and without
Genotoxicity:
negative
Cytotoxicity / choice of top concentrations:
no cytotoxicity nor precipitates, but tested up to recommended limit concentrations
Vehicle controls validity:
valid
Untreated negative controls validity:
not applicable
Positive controls validity:
valid
Key result
Species / strain:
E. coli WP2
Metabolic activation:
with and without
Genotoxicity:
negative
Cytotoxicity / choice of top concentrations:
no cytotoxicity nor precipitates, but tested up to recommended limit concentrations
Vehicle controls validity:
valid
Untreated negative controls validity:
not applicable
Positive controls validity:
valid

Applicant's summary and conclusion

Conclusions:
All criteria for a valid study were met as described in the protocol. The results of the Bacterial Reverse Mutation Assay indicate that, under the conditions of this study, Pivalic Acid did not cause a positive mutagenic response with any of the tester strains in either the presence or absence of Aroclor-induced rat liver S9. The study was concluded to be negative without conducting a confirmatory (independent repeat) assay because the results were clearly negative; hence, no further testing was warranted.
Executive summary:

All criteria for a valid study were met as described in the protocol. The results of the Bacterial Reverse Mutation Assay indicate that, under the conditions of this study, Pivalic Acid did not cause a positive mutagenic response with any of the tester strains in either the presence or absence of Aroclor-induced rat liver S9. The study was concluded to be negative without conducting a confirmatory (independent repeat) assay because the results were clearly negative; hence, no further testing was warranted.