Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 249-276-6 | CAS number: 28872-01-7
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Endpoint summary
Administrative data
Description of key information
Additional information
Based on a measured log Kow of -0.3 for both the Oleyltetramine and cocotriamine using the slow-stirring method (OECD 123) a BCF is calculated of 3.162 L/kg ww forthe alkyl-dipropylene triamines and tripropylene tetramines assuming no metabolism.
In vitro biotransformation by rainbow trout hepatic subcellulair fraction has been observed for primary alkyl amines and alkyl propane-1,3 -diamines. It is therefore likely that also alkyl dipropylene triamines and alkyl tripropylene tetramines are biotransformed.
The calculated BCF indicates a low bioaccumulation potential. These substances are almost completely protonated under ambient conditions. In addition, the bioavailable fraction of these substances is quickly degraded and a chronic exposure to a significant concentration is therefore unlikely. The predicted low bioaccumulation potential is supported by the low acute to chronic ratio observed in the long-term daphnia tests with these substances. The daphnia reproduction tests in general show that for alkyl polyamines that at one concentration step below the concentration where all parental daphnids were immobile, no detrimental effect on reproduction is observed when compared to the control. These observations indicate in a low acute-to-chronic ratio. A low acute-to-chronic ratio is indicative of a non-specific mode of action and is often associated with not systemic effects. This observation is consistent with the known effects of cationic surfactants on aquatic organisms, where toxicity is associated with physical binding to respiratory membranes. This explains the steep concentration curves seen and the lack of intermediate chronic effects on reproduction. Finally is the biodegradability a strong indication that these substances are also metabolized in fish.Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.