Registration Dossier
Registration Dossier
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 943-535-3 | CAS number: -
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data

Genetic toxicity: in vitro
Administrative data
- Endpoint:
- in vitro gene mutation study in bacteria
- Remarks:
- Type of genotoxicity: gene mutation
- Type of information:
- experimental study
- Adequacy of study:
- key study
- Study period:
- 02 April 2014 to 29 April 2014
- Reliability:
- 1 (reliable without restriction)
- Rationale for reliability incl. deficiencies:
- other: There were no deviations (unplanned changes) from the study plan.
Cross-reference
- Reason / purpose for cross-reference:
- reference to same study
Data source
Reference
- Reference Type:
- study report
- Title:
- Unnamed
- Year:
- 2 014
- Report date:
- 2014
Materials and methods
Test guidelineopen allclose all
- Qualifier:
- according to guideline
- Guideline:
- OECD Guideline 471 (Bacterial Reverse Mutation Assay)
- Deviations:
- no
- Qualifier:
- according to guideline
- Guideline:
- EU Method B.13/14 (Mutagenicity - Reverse Mutation Test Using Bacteria)
- Deviations:
- no
- Qualifier:
- according to guideline
- Guideline:
- EPA OPPTS 870.5100 - Bacterial Reverse Mutation Test (August 1998)
- Deviations:
- no
- Qualifier:
- according to guideline
- Guideline:
- JAPAN: Guidelines for Screening Mutagenicity Testing Of Chemicals
- Deviations:
- no
- Principles of method if other than guideline:
- No
- GLP compliance:
- yes (incl. QA statement)
- Type of assay:
- bacterial reverse mutation assay
Test material
- Reference substance name:
- Succinic anhydride, alkylation products with C12-rich branched olefins from propene oligomerisation, hydrolyzed, esterification products with propylene oxide
- EC Number:
- 943-535-3
- Molecular formula:
- C19H34O5
- IUPAC Name:
- Succinic anhydride, alkylation products with C12-rich branched olefins from propene oligomerisation, hydrolyzed, esterification products with propylene oxide
- Test material form:
- other: liquid
- Details on test material:
- Purity: 100%
Physical state/Appearance: Amber coloured viscous liquid
Expiry Date: 17 March 2016
Storage Conditions: Room temperature in the dark
Constituent 1
Method
- Target gene:
- TA1537: his C 3076; rfa-; uvrB-
TA98: his D 3052; rfa-;uvrB-; R-factor
TA1535: his G 46; rfa-; uvrB-
TA100: his G 46; rfa-; uvrB-; R-factor
WP2uvrA: trp-; uvrA-
Species / strainopen allclose all
- Species / strain / cell type:
- E. coli WP2 uvr A
- Species / strain / cell type:
- S. typhimurium TA 1535, TA 1537, TA 98 and TA 100
- Metabolic activation:
- with and without
- Metabolic activation system:
- The S9 Microsomal fraction was prepared in-house from male rats induced with Phenobarbitone/beta-Naphthoflavone
- Test concentrations with justification for top dose:
- Eight concentrations of the test item (1.5, 5, 15, 50, 150, 500, 1500 and 5000 μg/plate) were assayed in triplicate against each tester strain, using the direct plate incorporation method.
- Vehicle / solvent:
- The test item was soluble acetone at 100 mg/mL in solubility checks performed in-house. The test item was insoluble in water and DMSO.
Controls
- Untreated negative controls:
- yes
- Negative solvent / vehicle controls:
- yes
- True negative controls:
- yes
- Positive controls:
- yes
- Positive control substance:
- 4-nitroquinoline-N-oxide
- 9-aminoacridine
- N-ethyl-N-nitro-N-nitrosoguanidine
- benzo(a)pyrene
- other: 2-Aminoanthracene
- Details on test system and experimental conditions:
- Without Metabolic Activation
0.1 mL of the appropriate concentration of test item, vehicle or appropriate positive control was added to 2 mL of molten trace amino-acid supplemented media containing 0.1 mL of one of the bacterial strain cultures and 0.5 mL of phosphate buffer. These were then mixed and overlayed onto a Vogel-Bonner agar plate. Negative (untreated) controls were also performed on the same day as the mutation test. Each concentration of the test item, appropriate positive, vehicle and negative controls, and each bacterial strain, was assayed using triplicate plates.
With Metabolic Activation
The procedure was the same as described previously except that following theaddition of the test item formulation and bacterial culture, 0.5 mL of S9-mix was added to the molten trace amino-acid supplemented media instead of phosphate buffer.
All of the plates were incubated at 37 °C± 3 °C for approximately 48 hours and scored for the presence of revertant colonies using an automated colony counting system. The plates were viewed microscopically for evidence of thinning (toxicity). - Evaluation criteria:
- All bacterial strains must have demonstrated the required characteristics as determined by their respective strain checks.
All tester strain cultures should exhibit a characteristic number of spontaneous revertants per plate in the vehicle and untreated controls.
All tester strain cultures should be in the range of 0.9 to 9 x 10^9 bacteria per mL.
Diagnostic mutagens (positive control chemicals) must be included to demonstrate both the intrinsic sensitivity of the tester strains to mutagen exposure and the integrity of the S9-mix. All of the positive control chemicals used in the study should induce marked increases in the frequency of revertant colonies, both with or without metabolic activation.
There should be a minimum of four non-toxic test item dose levels.
There should be no evidence of excessive contamination.
There are several criteria for determining a positive result. Any, one, or all of the following can be used to determine the overall result of the study:
1. A dose-related increase in mutant frequency over the dose range tested (De Serres and Shelby, 1979).
2. A reproducible increase at one or more concentrations.
3. Biological relevance against in-house historical control ranges.
4. Statistical analysis of data as determined by UKEMS (Mahon et al., 1989).
5. Fold increase greater than two times the concurrent solvent control for any tester strain (especially if accompanied by an out-of-historical range response (Cariello and Piegorsch, 1996)).
A test item will be considered non-mutagenic (negative) in the test system if the above criteria are not met.
Results and discussion
Test resultsopen allclose all
- Species / strain:
- E. coli WP2 uvr A
- Metabolic activation:
- with and without
- Genotoxicity:
- negative
- Cytotoxicity / choice of top concentrations:
- cytotoxicity
- Remarks:
- initially from 150 and 500 μg/plate in the absence and presence of S9-mix respectively.
- Vehicle controls validity:
- valid
- Untreated negative controls validity:
- valid
- Positive controls validity:
- valid
- Species / strain:
- S. typhimurium TA 1535, TA 1537, TA 98 and TA 100
- Metabolic activation:
- with and without
- Genotoxicity:
- negative
- Cytotoxicity / choice of top concentrations:
- cytotoxicity
- Remarks:
- initially from 150 and 500 μg/plate in the absence and presence of S9-mix respectively.
- Vehicle controls validity:
- valid
- Untreated negative controls validity:
- valid
- Positive controls validity:
- valid
- Additional information on results:
- The maximum dose level of the test item in the first experiment was selected as the maximum recommended dose level of 5000 μg/plate. Results from the first mutation test showed that the test item induced toxicity at 5000 ug/plate. Results from the second mutation test were identical to Experiment 1 with weakened bacterial background lawns at 5000 μg/plate in the absence and presence of S9-mix.
There were no significant increases in the frequency of revertant colonies recorded for any of the bacterial strains, with any dose of the test item, either with or without metabolic activation in the first mutation test. Similarly, no significant increases in the frequency of revertant colonies were recorded for any of the bacterial strains, with any dose of the test item, either with or without metabolic activation in Experiment 2.
All of the positive control chemicals used in the test induced marked increases in the frequency of revertant colonies thus confirming the activity of the S9-mix and the sensitivity of the bacterial strains. - Remarks on result:
- other: all strains/cell types tested
- Remarks:
- Migrated from field 'Test system'.
Applicant's summary and conclusion
- Conclusions:
- Interpretation of results (migrated information):
negative
0S11211AP was considered to be non-mutagenic under the conditions of this test. - Executive summary:
Introduction
The test method was designed to be compatible with the guidelines for bacterial mutagenicity testing published by the major Japanese Regulatory Authorities including METI, MHLW and MAFF, the OECD Guidelines for Testing of Chemicals No. 471 "Bacterial Reverse Mutation Test", Method B13/14 of Commission Regulation (EC) number 440/2008 of 30 May 2008 and the USA, EPA OCSPP harmonized guideline- Bacterial Reverse Mutation Test.
Methods
Salmonella typhimurium strains TA1535, TA1537, TA98 and TA100 and Escherichia coli strain WP2uvrA were treated with the test item using the Ames plate incorporation method at up to eight dose levels, in triplicate, both with and without the addition of a rat liver homogenate metabolizing system (10% liver S9 in standard co-factors). The dose range for Experiment 1 was predetermined and was 1.5 to 5000 µg/plate. The experiment was repeated on a separate day using fresh cultures of the bacterial strains and fresh test item formulations. The dose range was amended, following the results of Experiment 1, and ranged between 5 and 5000 µg/plate, depending on presence or absence of S9-mix.
Up to seven test item dose levels were selected in Experiment 2 in arder to achieve both four non-toxic dose levels and the toxic limit of the test item.
Results
The vehicle (acetone) control plates gave counts of revertant colonies within the normal range. All of the positive control chemicals used in the test induced marked increases in the frequency of revertant colonies, both with or without metabolic activation. Thus, the sensitivity of the assay and the efficacy of the S9-mix were validated.
The maximum dose level of the test item in the first experiment was selected as the maximum recommended dose level of 5000 µg/plate. Results from the first mutation test showed that the test item induced toxicity to all of the bacterial tester strains, at 5000 µg/plate in the absence and presence of S9-mix respectively. Results from the second mutation test were identical to Experiment 1 with weakened bacterial background lawns at 5000 µg/plate in the absence and presence of S9-mix respectively. A test item precipitate was observed on the plates at the maximum doses tested in both the presence or absence of S9-mix.
There were no significant increases in the frequency of revertant colonies recorded for any of the bacterial strains, with any dose of the test item, either with or without metabolic activation in the first mutation test. Similarly, no significant increases in the frequency of revertant colonies were recorded for any of the bacterial strains, with any dose of the test item, either with or without metabolic activation in Experiment 2.
Conclusion
0S11211AP was considered to be non-mutagenic under the conditions of this test.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.
