Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 282-968-6 | CAS number: 84501-49-5
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Endpoint summary
Administrative data
Description of key information
Additional information
The category consists of alkyl sulfates with a predominantly linear alkyl chain length of C8-C20. Most chemicals of this category are not defined substances, but mixtures of homologues with different alkyl chain lengths (UVCBs). The most important common structural feature of the category members is the presence of a predominantly linear aliphatic hydrocarbon chain with a polar sulfate group, neutralized with a counter ion (i.e., Na+, K+, NH4+, ethanolamine or monoisopropanolamine cation). The hydrophobic hydrocarbon chain (with a length between C8 and C20) and the polar sulfate group confer surfactant properties and enable the commercial use of these substances as anionic surfactants. Common physical and biological pathways result in structurally similar breakdown products, and are, together with the surfactant properties, responsible for similar environmental behavior and essentially identical hazard profiles with regard to human health. The counter ion will not influence chemical reactivity and classification for the purpose of this assessment is not expected to be affected by the difference in counter ion (ref. OECD SIDS 2007, HERA Report 2002, Koennecker et al. 2011).
In aqueous environments the salts will dissociate, so that the counter ions will not fundamentally alter pathways of tissue disposition, metabolism, excretion, or target organs of toxicity. Accordingly no major differences were found in most of the endpoints between the compounds with different counter ions (ref. OECD SIDS 2007, HERA Report 2002, Koennecker et al. 2011). Moreover, several of the counter-ions have also been assessed in the OECD HPV Program and/or according to REACH Regulation (EC) No 1907/2006: ethanolamine (CAS 141-43-5) triethanolamine (CAS 102-71-6), monoisopropanolamine (CAS 78-96-6), the ammonia category (CAS 7664-41-7; 1336-21-6; 7783-18-8; 12593-60-1) and ammonium salts, like ammonium sulfate (CAS 7783-20-2), chloride (CAS 12125-02-9) and bicarbonate (CAS 1066-33-7).
In accordance with Article 13 (1) of Regulation (EC) No 1907/2006, "information on intrinsic properties of substances may be generated by means other than tests, provided that the conditions set out in Annex XI are met. In particular for environmental fate and eco-toxicity, information shall be generated whenever possible including the use of information from structurally related substances. In this particular case the similarity of the alkyl sulfates category members is justified, in accordance with the specifications listed in Regulation (EC) No. 1907/2006 Annex XI, 1.5 Grouping of substances and read-across, is based on the scope of overlapping of composition, similar molecular structure, physico-chemical properties, toxicological, ecotoxicological profiles and supported by various QSAR methods.
Physico-chemical properties relevant for environmental fate of alkyl sulfates:
Physico-chemical characteristics of the substances in the category are similar, or follow regular patterns. The most important parameter influencing PC-properties is the varying length of the alkyl chain.
- Vapor pressure - as ionic substances, category members are characterized by low vapor pressures.
- Partition coefficient - as surfactants concentrate at hydrophilic/hydrophobic boundaries and do not equilibrate between phases, Pow is not a good descriptor of surfactant hydrophobicity and only of a limited predictive value for the partitioning of these compounds in the environment. Nevertheless, experimental Pow values have been obtained, usually as quotients of solubilities in octanol and in water. Partition coefficients are low and they increase with the alkyl chain range.
- Water solubility - the solubility in water of the category members is high; particular values decrease with the alkyl chain range.
Environmental fate and pathways of alkyl sulfates:
- The substances are readily biodegradable. Abiotic degradation (e.g. hydrolysis) is not a relevant for environmental pathway due to the chemical structure of the substances.
- As the log Pow-value is below 3, a potential for bioaccumulation can be excluded.
- Due to the low to moderate log Koc-value, it can be predicted that the sorption to sludge, sediments and soils will be relatively low. Alkyl sulfates are unlikely to persist in the aquatic environment.
Aquatic toxicity of alkyl sulfates:
For the alkyl sulfate category many tests are available on the acute and long-term toxicity to fish, invertebrates and algae, conducted with single-chain homologues as well as with technical mixtures. The results demonstrate that invertebrates are the most sensitive trophic level, followed by fish and algae. The most important influencing parameter for fish and invertebrate toxicity within the alkyl sulfates category is the chain length of the alkyl group.
Short-term toxicity to fish is well studied for the category of alkyl sulfates and includes tests with substances of chain lengths ranging from C8 to C18 covering a variety of both freshwater and marine species. Alkyl sulfates of chain lengths from C8 to C12 seem to have low to moderate toxicity. Homologues from C13 to C15 are more toxic than C8 to C12. Toxicity of the chain lengths from C16 and higher is inconsistent, but in general these substances are less toxic than C13 to C15. This most probably can be explained by variable bioavailability as a consequence of reduced water solubility.
The influence of the chain length of alkyl sulfates on the acute toxicity fish is comparable to invertebrate toxicity (OECD SIDS, 2007). Also in this case a clear correlation can be shown since the available database includes the studies for the alkyl sulfates ranging from C8 to C18. Short-term toxicity to aquatic invertebrates increases with increasing length of the hydrocarbon chain up to C16 and then decreases.
Available long-term tests on fish with alkyl sulfates show that the toxicity depends again on the substance chain length. The same pattern as in the acute tests was observed - homologues C12 and C18 are less toxic than the chain lengths C14-C15 (OECD SIDS, 2007).
Available information on the long-term toxic effects of alkyl sulfates to Ceriodaphnia dubia includes the substances with a carbon chain length from C10 to C18. A clear response curve was observed - toxicity increase with chain length from C12 to C14 and then decreased up to C18. Since C18 AS is insoluble in calcium-containing water (i.e., Ceriodaphnia test waters), the effects are due to physical interactions, not the classic uptake into the organism and then elicit toxicity. Chronic toxicity testing with Daphnia magna using the technical product C14 -15 proved that these are the most toxic chain lengths for aquatic invertebrates (OECD SIDS, 2007).
Several reliable experimental studies with algae are available for alkyl sulfates. It seems that algae are less sensitive to alkyl sulfate exposure than fish and invertebrates. The results do not allow the clear prediction of a chain length dependency of algal toxicity because most of the studies were conducted with technical products. Nevertheless, it seems that the most toxic chain lengths are C14 and C15 (OECD SIDS, 2007).
Activated sludge respiration inhibition and Pseudomonas putida tests are available for the alkyl sulfates of chain lengths from C12 to C18. In Pseudomonas putida, a tendency for increasing toxic effects with increasing carbon chain length could be observed (OECD SIDS, 2007).
Acute toxicity key values for C9-11AS Na (CAS 84501-49-5)
- For fish: 48h LC50 (Cyprinus carpio, pre-larvae mortality) = 13 mg/L (freshwater, nominal concentration, Japanese Industrial Standard JIS K0102, read-across from CAS 142-87-0); 96h LC50 (Cyprinodon variegatus, mortality) = 4.1 mg/L (marine water, measured concentration, ASTM E-35 (1980), read-across from CAS 151-21-3)
- For invertebrates: 48h EC50 (Daphnia magna, immobilization) = 5.5 mg/L (freshwater, nominal concentration, read-across from CAS 151-21-3); 48h EC50 (Artemia salina, mortality) = 3.15 mg/L (marine water, nominal concentrations, read-across from CAS 151-21-3)
- For algae: 72h EC50 (Pseudokirchneriella subcapitata, growth rate) = 8.64 mg/L (read-across from CAS 142-87-0)
Chronic toxicity key values for C9-11AS Na (CAS 84501-49-5)
- For fish: 42d NOEC (Pimephales promelas; mortality and growth) ≥ 1.357 mg/L (measured concentration, read-across from CAS 151-21-3)
- For invertebrates 21d NOEC (Daphnia magna, reproduction) = 1.4 mg/L (measured concentration, read-across from CAS 142-87-0)
- For algae: 72h EC10 (Pseudokirchneriella subcapitata, growth rate) = 0.95 mg/L (read-across from CAS 142-87-0)
- For microorganisms 3h EC50 (activated sludge respiration inhibition) = 135 mg/L (nominal concentration, similar to OECD 209, read-across from CAS 151-21-3)
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.