Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: - | CAS number: -
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Endpoint summary
Administrative data
Link to relevant study record(s)
- Endpoint:
- basic toxicokinetics, other
- Remarks:
- Assessment based on data set
- Type of information:
- calculation (if not (Q)SAR)
- Adequacy of study:
- key study
- Reliability:
- 2 (reliable with restrictions)
- Rationale for reliability incl. deficiencies:
- accepted calculation method
- Justification for type of information:
- Assessment has been based on existing data set for the substance and through assessment of similar substances in this class.
- Objective of study:
- absorption
- distribution
- excretion
- metabolism
- toxicokinetics
- Qualifier:
- no guideline followed
- GLP compliance:
- no
- Radiolabelling:
- no
- Type:
- absorption
- Results:
- CJ303 had a low skin absorption rate and may be absorbed by inhalation.
- Type:
- distribution
- Results:
- CJ303 can be distributed in various tissues and does not accumulate in a specific organ.
- Type:
- metabolism
- Results:
- No direct evidence showed that how CJ303 is metabolized.
- Type:
- excretion
- Results:
- Most anionic precursors or their metabolites are excreted into the bile through the liver and excreted with feces, while the cationic part is mainly excreted through the urine.
- Details on absorption:
- Based on the physical form (solid), water solubility (soluble), log P (not conducive to transdermal absorption), and molecular weight (1298.11 g / mol), the transdermal absorption rate was judged to be low (10%).
As the substance is a soluble solid, the content of the particle size distribution <100 μm is 72.31%, and exposure through the inhalation route may occur. In case of inhalation exposure, based on the physical form (solid) and water solubility of the substance, the substance may be quickly absorbed through the alveoli and enter the systemic circulation. - Details on distribution in tissues:
- Generally, substances with smaller molecular weight and better water solubility will be widely distributed in the body. CJ303 is relatively water-soluble and can be distributed in the body. Based on CJ303's water solubility, particle size, and Log Kow value, it is unlikely to accumulate in organs or tissues such as lung, bone, and fat.
- Test no.:
- #1
- Transfer type:
- other: kidneys
- Observation:
- distinct transfer
- Remarks:
- Except for anions, sodium and lithium ions are mainly metabolized by the urine from the kidneys.
- Details on excretion:
- To promote excretion, lipophilic parent compounds may be converted into polar metabolites and excreted. Based on molecular weight of CJ303 and its main metabolites are more than 300, it is speculated that most anions are excreted into the bile through the liver and excreted with feces, and cations (sodium, lithium ions) are mainly excreted through urine.
- Metabolites identified:
- no
- Details on metabolites:
- None found.
- Conclusions:
- According to the existing physical and chemical data and health toxicology research data, CJ303 metabolites can be absorbed into the living body through the respiratory tract, the percutaneous absorption rate is reduced, and oral absorption is difficult to occur. Substances can be distributed in the body without accumulating in certain organisms. There is no direct evidence showed that how the substance is metabolized. Through the prediction of metabolic pathways and products, and the phenomenon of blue feces observed in animal experiments, it is possible that most of the maternal anabolic livers are excreted into the bile and excreted in the feces. Some are excreted mainly through the urine.
- Executive summary:
CJ303 is a dark blue powder with a purity of 94.06% at 20°C and 101.3kPa. It contains anions, sodium and lithium ions. The molecular weight of the anions is 1298.11g/mol. log Pow is less than -5.82, particle size distribution:> 500μm: 0.15%; 355 ~ 500μm: 0.29%; 250 ~ 355μm: 0.36%; 180 ~ 250μm: 4.20%; 150 ~ 180μm: 9.14%; 100 ~ 150μm: 13.56%; 53 ~ 100μm: 40.42%; <53μm: 31.89%; Hydrolysis test results show that the hydrolysis rates of CJ303 in buffer solutions at pH 4.0, 7.0, and 9.0 are -0.2%, 0.6%, and -1.1%, and the hydrolysis rates are less than 10% at 50°C. Based on the above characteristics, the substance is not easily absorbed after oral exposure. The in vivo data are as follows: in the acute oral toxicity test, at the 2000 mg / kg bw dose level, no animals died or were dying or other important clinical symptoms of toxicity, all test animals gained normal weight, and significant clinical symptoms were observed. It was the rats that excreted dark blue feces in both steps, and one rat showed green urine in the second step. Visual inspection showed that all animals had dark green stains on both kidneys and mesenteric lymph nodes, and no other lesions were found. LD50 of female rats was greater than 2000 mg/kg bw; in repeated exposure test for 28 days, no obvious signs of poisoning were observed in animals at doses of 1000 mg / kg bw / day and below, and animals did not die. Blue feces were observed from the first day of the mouse experiment to the end of the experiment. This phenomenon is related to the properties of the declared substance and is not a toxic side effect. No abnormality was found in food intake and body weight, no significant abnormality was found in gross anatomy, and NOAEL was greater than 1000 mg / kg bw / day. In teratogenicity trials, no death or treatment-related clinical toxicity was observed in each dose group. Feces of the most rats in each dose group were blue after being poisoned, and there were no adverse reactions. The weight, food intake, and reproductive capacity of pregnant rats in each dose group had no significant effects. There were no adverse effects on fetal weight and sex distribution in each dose group, no abnormality was observed, maternal toxicity NOAEL = 1000 mg / kg bw / day, and offspring developmental toxicity NOAEL = 1000 mg / kg bw / day. Physical and chemical data (particle size <100 μm: 72.31%) showed that the substance may be absorbed through the respiratory tract. In the acute inhalation toxicity test, the main test used a concentration of 1.11 mg / L. One female animal died on the first day after exposure, after that, all the animals showed slow breathing, 6 of them had noisy breathing, the activity of dead animals decreased before death, and the surviving animals returned to normal after the second day. The skin and lungs were discolored, and the stomach and trachea had blue liquid. The skin, lungs, lung-related lymph nodes, and kidneys of the surviving animals turned blue and discolored. These symptoms were mainly related to the color of the test substance. LC50> 1.11 mg / L. Physical and chemical data show that the skin absorption rate of the substance is low, and no systemic toxicity was found in the acute transdermal, skin irritation, and skin sensitization tests. Due to its greater water solubility, the substance can be distributed in the body. There is no direct evidence of how the substance is metabolized or excreted, but the anionic part may be excreted into the bile via the liver, excreted with feces, and the cationic part excreted mainly through urine.
Reference
There is no direct evidence showed that how CJ303 is metabolized.
Description of key information
Physical and chemical data show that the skin absorption rate of the substance is low, and no systemic toxicity was found in the acute transdermal, skin irritation, and skin sensitization tests. Due to its greater water solubility, the substance can be distributed in the body. There is no direct evidence of how the substance is metabolized or excreted, but the anionic part may be excreted into the bile via the liver, excreted with feces, and the cationic part excreted mainly through urine.
Key value for chemical safety assessment
- Bioaccumulation potential:
- no bioaccumulation potential
Additional information
According to the existing physical and chemical data and health toxicology research data, CJ303 metabolites can be absorbed into the living body through the respiratory tract, the percutaneous absorption rate is reduced, and oral absorption is difficult to occur. Substances can be distributed in the body without accumulating in certain organisms. There is no direct evidence showed that how the substance is metabolized. Through the prediction of metabolic pathways and products, and the phenomenon of blue feces observed in animal experiments, it is possible that most of the maternal anabolic livers are excreted into the bile and excreted in the feces. Some are excreted mainly through the urine.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.