Registration Dossier
Registration Dossier
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 630-337-4 | CAS number: 39211-00-2
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data

Endpoint summary
Administrative data
Description of key information
Additional information
Stability/degradation: Due to the fact that cesium tetrafluoroaluminate is an inorganic substance, only abiotic degradation can be considered. A hydrolysis test was performed as part of a solubility study at varying pH values. Although the study was not performed according to GLP criteria or normalised testing guideline, the results are considered adequate for assessment. In native and acidic solution there is no remarkable evidence of hydrolysis, being the mol ration of Cs, Al and F in solution close to the theoretical 1:1:4 of CsAlF4. Cesium tetrafluoroaluminate will most probably mainly dissociate into Cs+ and AlF4 -. In neutral and alkaline environment a gel-like residue is formed which could not be separated from the solution. The XRD results and the mol ration indicate that in alkaline solution AlF4 -, AlF52- and F- as anions and as cations Cs+ and Al+ appear. The reduced aluminium content in the clear pH 9 solution may probably result from a precipitation of aluminium fluoride or aluminium hydroxyfluoride. Since hydrolyses changes the chemical form but does not decompose cesium tetrafluoroaluminate, the concept of degradation by hydrolysis is not relevant in the consideration of its environmental fate.
Adsorption/desorption:
Adsorption of cesium tetrafluoroaluminate to soil is not to be expected as the substance instantly dissociates into various ions. The following information is available on the adsorption of cesium and fluoride ions. For cesium the lowest Kd value was 0.6 L/kg for a measurement made on a system containing a soil consisting primarily of quartz, kaolinite, and dolomite and an aqueous phase consisting of groundwater with a relatively high ionic strength (I. 0.1 M). The largest cesium Kd values was 52,000 L/kg for a measurement made on a pure vermiculite solid phase . The average cesium Kd value was 2635 ± 530 L/kg. For fluoride a Koc value of 3.16 is calculated based on a log Kow of -1 in EUSES (in the EU-RAR for hydrogen fluoride a log Kow of -1.4 is suggested). From the data available for aluminium, no actual Kd and/or Koc values can be determined.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.
