Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 205-633-8 | CAS number: 144-55-8
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Toxicity to aquatic algae and cyanobacteria
Administrative data
Link to relevant study record(s)
Description of key information
In accordance with section 1 of Annex XI of the REACH Regulation, the study does not need to be conducted as in the aquatic environment sodium bicarbonate is dissociated into sodium and bicarbonate ions. Both ions originally exist in nature, and their concentrations in surface water are dependent on various factors, such as geological parameters, weathering and human activities. Therefore, there is a continuous source of both ions into the environment and both ions have been measured extensively in aquatic ecosystems. Furthermore, bicarbonate ions are provided in high concentrations in algae growth medium, in order to ensure a sufficient carbon source for the organisms. Sodium ions are also present in high concentrations in the growth medium as essential ions.
Indeed, two reliable studies (K 2) testing the increase of growth of algae with the addition of NaHCO3 are available.
Nunez et al. (2016) exposed two marine diatoms, Phaeodactylum tricornutum and Nannochloropsis salina, to a concentration range of 0.5 to 5 g/L of NaHCO3 for 1-12 days during their growth phase, to assess their optimal growth condition. Indeed, with increasing test item concentration algae’s growth rate increased. Thus, a NOEC of 5,000 mg/ L for inhibition effect was determined.
Differently, Zhou et al. (2016) exposed three marine red macroalgae, Gracilaria lemaneiformis, Gracilaria vermiculophylla and Gracilaria chouae, to a concentration range of 84 to 420 mg/L of NaHCO3 for 14 days to assess their optimal growth condition. Indeed, with increasing test item concentration algae’s growth rate increased up to the concentration of 420 mg/L (LOEC), when all the algae exhibited a significant grow rate inhibition compared with the control (NOEC 336 mg/L). Chl a, at the end of the experiment was also determined. A LOEC of 420 mg/L was determined for chlorophyll inhibition for G. lemaneiformis, G. vermiculophylla. G. chouae at the highest concentration tested showed a decrease but not significant decrease of Chl a compared with the control, thus a NOEC > 420 mg/L was determined.
Key value for chemical safety assessment
Additional information
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.