Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 205-633-8 | CAS number: 144-55-8
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Endpoint summary
Administrative data
Description of key information
Additional information
Degradation
Sodium bicarbonate is an inorganic substance which cannot be oxidized or biodegraded by micro-organisms.
In water, sodium bicarbonate dissociates into sodium and bicarbonate. Bicarbonate re-equilibrates according to the following equations:
HCO3- ↔ CO32- + H+ pKa = 10.33
CO2 + H2O ↔ HCO3- + H+ pKa = 6.35
Only a small fraction of the dissolved CO2 is present as HCO3-, the major part is present as CO2. The amount of CO2 in water is in equilibrium with the partial pressure of CO2 in the atmosphere. The CO2 / HCO3-/ CO32- equilibriums are the major buffer of the pH of freshwater throughout the world.
Environmental distribution
Sodium bicarbonate is an inorganic substance and therefore standard computer models cannot be used to determine the transport or distribution between environmental compartments.
Solid sodium bicarbonate has a negligible vapour pressure and for this reason it will not be distributed to the atmosphere.
If sodium bicarbonate is emitted to water, it will remain in the water phase. If the pH is decreased, then carbonic acid (H2CO3 or CO2) can be formed. If the concentration of carbon dioxide in water is above the water solubility limit, the carbon dioxide will distribute to the atmosphere.
An addition of bicarbonate to water will converge the pH to a value of 8.34. The value of 8.34 is equal to (pKa1 + pKa2)/2. In other words, if the initial pH of the receiving water is for example 7.0 then an addition of bicarbonate will increase the pH but it will never be higher than 8.34. However, if the initial pH of the receiving water is for example 9.0 then an addition of bicarbonate will decrease the pH but it will never be lower than 8.34.
If sodium bicarbonate is emitted to soil, it can escape to the atmosphere as CO2 (see above), precipitate as a metal carbonate, form complexes or stay in solution.
The high water solubility and low vapour pressure indicate that sodium bicarbonate will be found predominantly in the aquatic environment. Sodium bicarbonate is present in the environment as sodium and bicarbonate ions, which implies that it will not adsorb on particulate matter or surfaces and will not accumulate in living tissues. It is obvious that both the sodium and bicarbonate ion have a wide natural occurrence.
[partly taken from OECD SIDS on sodium bicarbonate (2002), pg. 10 -11]
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.