Registration Dossier
Registration Dossier
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 231-131-3 | CAS number: 7440-22-4
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data

Endpoint summary
Administrative data
Description of key information
Additional information
Recent ECHA guidance on aquatic bioaccumulation assessment for REACH registration observes that it is not possible to make log Kow or solubility based estimates of nanomaterial bioaccumulation as nanomaterials within test systems are “dispersed” and not in solution. As such, measured BCF values are required to fulfil data requirements under REACH.
The guidance also states that it is also of vital importance to consider the influence of aggregation/agglomeration as well as dissolution on bioaccumulation. If possible, information on bioaccumulation of nanomaterials should be supported with information on the form of the substance present in the animal tissue (i.e. are nanoparticles of silver bioaccumulated or just ionic silver released from nanomaterials).
Handy et al. (2012) outline several problems with the performance of conventional bioaccumulation tests using nanomaterials. Critically, they question the founding assumption of the “steady-state” required for BCF measurements from aqueous exposures as colloidal dispersions (of nanomaterials) are dynamic systems which do not achieve steady equilibrium state (Handy et al. 2008). Equally, uptake by endocytosis (a potential mechanism of accumulation of nanoparticles) may also confound the use of standard kinetic relationships employed in bioaccumulation tests that are based on diffusion (i.e. the Fick equations). Handy et al. (2012) warn against the application of bioaccumulation tests without an appreciation of the underlying mechanism of uptake and kinetics. Handy et al. (2012) also discuss the use of diet borne studies. However, limited potential for the verification of particle size distribution of nanomaterials when incorporated into food (as per studies conducted in soils) are considered to restrict the usefulness of diet-based bioaccumulation tests with nanomaterials.
Read-across from the dissolved silver ion is also applied to fulfil information requirements for silver and silver-based (coated) nanomaterials. Supporting information for this read-across is summarised in endpoint summaries and in further detail in the appended nanosilver read-across summary/justification document.
Literature cited
Handy RD, Henry TB, Scown TM, Johnstone BD, Tyler CR. 2008. Manufactured nanomaterials: their uptake and effects on fish – a mechanistic analysis. Ecotoxicology. 17: 396-409.
Handy R, van den brink N, Chappell M, Mühling M, Behra R, Dušinská M, Simpson P, Ahtiainen J, Jha AN, Seiter J, Bednar A, Kennedy A, Fernandes TF, Riediker M. 2012. Practical considerations for conducting ecotoxicity test methods with manufactured nanomaterials: what have we learnt so far? Ecotoxicology. 21: 933-972.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.
