Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 248-370-4 | CAS number: 27253-29-8
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Carcinogenicity
Administrative data
Description of key information
No adequate experimental animal studies are available to evaluate the carcinogenicity of zinc compounds in humans.
Key value for chemical safety assessment
Justification for classification or non-classification
On the basis of the existing information it can be concluded that there is no conclusive evidence for carcinogenic activity of any of the zinc compounds considered in this chemical safety report.
Additional information
There are a range of epidemiological studies that investigated the association between zinc exposure either through occupational activities or food supplementation and increased cancer risks. While no associations were found between occupational zinc exposure and excess cancer risk, the main association that has been made in this context is related to dietary/supplemental zinc and prostate cancer risk.
In contrast to established clinical and experimental evidence that prostate cancer is associated with a decrease in the zinc uptake, numerous epidemiology studies and reports of the effect of dietary and supplemental zinc on the incidence of prostate cancer have provided divergent, inconsistent and inconclusive results which range from adverse effects of zinc, protective effects of zinc and no effect of zinc on the risk of prostate cancer. Clinical and experimental studies have established that zinc levels are decreased in prostate cancer and support a role of zinc as a tumour suppressor agent. Malignant prostate cells in situ are incapable of accumulating high zinc levels from circulation (Franklin R.B.et al.,2005; Costello L.C, and Franklin R.B., 2006; Franklin R.B. and Costello L.C,, 2007).
In a recent critical assessment of epidemiology studies regarding dietary/supplemental zinc and prostate cancer risk, Costello et al.,concluded that epidemiological studies have not provided an established relationship for any effect or lack thereof of dietary/supplemental zinc on the risk of prostate cancer. Proclamations of an association of dietary/supplemental zinc and increased prostate cancer are based on inconclusive and uncorroborated reports (Costello L.C.et al.,2008).
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.