Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 266-004-1 | CAS number: 65996-71-6 The fused substance formed by the action of a flux upon the gangue of iron-bearing materials charged to a steelmaking furnace and upon the oxidized impurities in the steel produced. Depending upon the particular steelmaking operation, the slag is composed primarily of sulfur and oxides of aluminum, calcium, iron, magnesium, manganese, phosphorus, and silicon.
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Toxicity to birds
Administrative data
Link to relevant study record(s)
Description of key information
There is no indication of any hazard of slag to birds, and it has been shown that slags do not exhibit any relevant effect on aquatic or terrestrial organisms. Consequently, no measurements have been done with birds.
In a field study with slags on herring, it was observed coincidently that gulls feed indicriminately on eggs, larvae and adult herrings in control natural rock fields (basalt, granite, and diabase) as well as in slag fields.
Key value for chemical safety assessment
Additional information
No study designed to measure the toxicity of slags on birds was performed. However, there are some coincidental observations from another field study suggesting that slags do not negatively affect birds.
A field study was conducted in the Nord-Ostsee-Channel to elucidate the effects of stones of slag and natural rock on the reproduction of the herring, Clupea harengus.
The channel is a significant spawning ground of herring, and every year approximately 15 millions of adult fish enter the channel for reproduction. Billions of eggs are deposited in the channel above the stone fields, and attach to the stones and the filamentous algae growing on these stones.These eggs and the newly hatched fish larvae are indiscriminately eaten by gulls, and form for some period of the year the feed for large gull flocks which systematically harvest the eggs and larvae in a water depth of up to 40 cm.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.