Registration Dossier
Registration Dossier
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 233-826-7 | CAS number: 10377-60-3
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data

Genetic toxicity: in vitro
Administrative data
- Endpoint:
- in vitro gene mutation study in mammalian cells
- Type of information:
- experimental study
- Adequacy of study:
- key study
- Study period:
- 02 April 2010 to 02 June 2010
- Reliability:
- 2 (reliable with restrictions)
- Rationale for reliability incl. deficiencies:
- guideline study with acceptable restrictions
- Remarks:
- Because the study was performed with a substance analogue and the data are read across, the Klimisch score is 2.
Data source
Reference
- Reference Type:
- study report
- Title:
- Unnamed
- Year:
- 2 010
- Report date:
- 2010
Materials and methods
Test guidelineopen allclose all
- Qualifier:
- according to guideline
- Guideline:
- OECD Guideline 476 (In Vitro Mammalian Cell Gene Mutation Test)
- Deviations:
- no
- Qualifier:
- according to guideline
- Guideline:
- EU Method B.17 (Mutagenicity - In Vitro Mammalian Cell Gene Mutation Test)
- Deviations:
- no
- Principles of method if other than guideline:
- The recommendations of the “International Workshop on Genotoxicity Tests Workgroup” (the IWGT), published in the literature (Clive et al., 1995, Moore et al., 1999, 2000, 2002, 2003, 2006 and 2007).
- GLP compliance:
- yes (incl. QA statement)
- Type of assay:
- mammalian cell gene mutation assay
Test material
- Reference substance name:
- Potassium nitrate
- EC Number:
- 231-818-8
- EC Name:
- Potassium nitrate
- Cas Number:
- 7757-79-1
- IUPAC Name:
- potassium nitrate
- Test material form:
- solid: crystalline
- Details on test material:
- - Name of test material (as cited in study report): Potassium nitrate
- Substance type: White crystalline powder with lumps
- Physical state: Solid
- Stability under test conditions: Stable
- Storage condition of test material: At room temperature in the dark
Constituent 1
Method
- Target gene:
- Thymidine kinase (TK) locus in L5178Y mouse lymphoma cells
Species / strain
- Species / strain / cell type:
- mouse lymphoma L5178Y cells
- Details on mammalian cell type (if applicable):
- Species strain
- Type and identity of media:
-RPMI 1640 Hepes buffered medium (Dutch modification) containing penicillin/streptomycin (50 U/ml and 50 μg/ml, respectively), 1 mM sodium pyruvate and 2 mM L-glutamin supplemented with 10% (v/v) heat-inactivated horse serum (=R10 medium).
- Properly maintained: yes
- Periodically checked for Mycoplasma contamination: yes
- Periodically checked for karyotype stability: no
- Periodically "cleansed" against high spontaneous background: yes
- Metabolic activation:
- with and without
- Metabolic activation system:
- Rat liver S9-mix induced by a combination of phenobarbital and ß-naphthoflavone
- Test concentrations with justification for top dose:
- Dose range finding test:
Without and with S9-mix, 3 hours treatment: 33, 100, 333, 666 and 1011 µg/mL
Without S9-mix, 24 hours treatment: 33, 100, 333, 666 and 1011 µg/mL
Experiment 1:
Without and with S9-mix, 3 hours treatment: 1, 3, 10, 33, 100, 333, 666 and 1011 µg/mL
Experiment 2
Without and with S9-mix, 24 hours treatment: 1, 3, 10, 33, 100, 333, 666 and 1011 µg/mL - Vehicle / solvent:
- - Vehicle(s)/solvent(s) used: RPMI 1640 medium
- Justification for choice of solvent/vehicle:Test compound was soluble in RPMI 1640 medium and RPMI 1640 medium has been accepted and approved by authorities and international guidelines
Controlsopen allclose all
- Negative solvent / vehicle controls:
- yes
- Positive controls:
- yes
- Positive control substance:
- methylmethanesulfonate
- Remarks:
- without S9; 15 µg/mL for the 3 hours treatment period and 5 µg/mL for the 24 hours treatment period
- Positive control substance:
- cyclophosphamide
- Remarks:
- with S9; 7.5 µg/mL
- Details on test system and experimental conditions:
- METHOD OF APPLICATION: in medium
DURATION
- Exposure duration:
Short-term treatment
With and without S9-mix: 3 hours
Prolonged treatment period
Without S9-mix: 24 hours
- Expression time (cells in growth medium): 2 days
- Selection time (if incubation with a selection agent): 11 to 12 days
SELECTION AGENT (mutation assays): 5 µg/mL trifluorothymidine (TFT)
NUMBER OF REPLICATIONS:
- Solvent controls: Duplo cultures
- Treatment groups and positive control: Single cultures
NUMBER OF CELLS EVALUATED: 9.6 x 10E5 cells/concentration
DETERMINATION OF CYTOTOXICITY
- Method: relative suspension growth (dose range finding test) and relative total growth (mutation experiments) - Evaluation criteria:
- The global evaluation factor (GEF) has been defined by the IWTG as the mean of the negative/solvent MF distribution plus one standard deviation. For the micro well version of the assay the GEF is 126.
A test substance is considered positive (mutagenic) in the mutation assay if it induces a MF of more then MF(controls) + 126 in a dose-dependent manner. An observed increase should be biologically relevant and will be compared with the historical control data range.
A test substance is considered equivocal (questionable) in the mutation assay if no clear conclusion for positive or negative result can be made after an additional confirmation study.
A test substance is considered negative (not mutagenic) in the mutation assay if:
a) None of the tested concentrations reaches a mutation frequency of MF(controls) + 126.
b) The results are confirmed in an independently repeated test.
Results and discussion
Test resultsopen allclose all
- Key result
- Species / strain:
- mouse lymphoma L5178Y cells
- Metabolic activation:
- without
- Genotoxicity:
- negative
- Cytotoxicity / choice of top concentrations:
- no cytotoxicity nor precipitates, but tested up to recommended limit concentrations
- Untreated negative controls validity:
- valid
- Positive controls validity:
- valid
- Key result
- Species / strain:
- mouse lymphoma L5178Y cells
- Metabolic activation:
- with
- Genotoxicity:
- negative
- Cytotoxicity / choice of top concentrations:
- no cytotoxicity nor precipitates, but tested up to recommended limit concentrations
- Untreated negative controls validity:
- valid
- Positive controls validity:
- valid
- Additional information on results:
- TEST-SPECIFIC CONFOUNDING FACTORS
- Effects of pH: No
- Effects of osmolality: No
- Precipitation: No precipitation was observed up to and including the top dose of 1011 µg/mL (= 0.01 M)
RANGE-FINDING/SCREENING STUDIES:
- No toxicity was observed up to and including the highest test substance concentration of 1011 μg/ml
COMPARISON WITH HISTORICAL CONTROL DATA:
The spontaneous mutation frequencies in the solvent-treated control cultures were between the minimum and maximum value of the historical control data range and within the acceptability criteria of this assay.
ADDITIONAL INFORMATION ON CYTOTOXICITY:
No toxicity was observed up to and including the highest tested dose level in both experiments.
Applicant's summary and conclusion
- Conclusions:
- The spontaneous mutation frequencies in the solvent-treated control cultures were between the minimum and maximum value of the historical control data range and within the acceptability criteria of this assay.
Mutation frequencies in cultures treated with positive control chemicals were increased by 16- and 8.6-fold for MMS in the absence of S9-mix, and by 13- and 16-fold for CP in the presence of S9-mix. It was therefore concluded that the test conditions, both in the absence and presence of S9-mix, were appropriate and that the metabolic activation system (S9-mix) functioned properly.
In the absence of S9-mix, Potassium nitrate did not induce a significant increase in the mutation frequency in the first experiment. This result was confirmed in an independent repeat experiment with modifications in the duration of treatment time.
In the presence of S9-mix, Potassium nitrate did not induce a significant increase in the mutation frequency in the first experiment. This result was confirmed in an independent repeat experiment with modifications in the concentration of the S9 for metabolic activation.
It is concluded that Potassium nitrate is not mutagenic in the mouse lymphoma L5178Y test system under the experimental conditions described in this report.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.
