Registration Dossier

Data platform availability banner - registered substances factsheets

Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.

The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.

Diss Factsheets

Administrative data

Key value for chemical safety assessment

Genetic toxicity in vitro

Description of key information

A close analogue of the test item did not exert mutagenic activity in the reverse bacterial mutation assay (plate incorporation assay and pre-incubation assay according to Prival) with and without metabolic activation.

A close analogue of the test item w

as tested for DNA-damaging effects on rat hepatocytes and human fibroblasts in vitro. The investigations were performed with concentrations of 2, 10, 50 and 250 µg/ml. Testing of higher concentrations was not possible, because higher concentrations caused strong precipitations which rendered the microscopical evaluation of the specimens impossible. There were no marked differences in the number of silver grains per nucleus in the vehicle control and in the cultures treated with the various concentrations of the test item. The results with the positive control substance were within the normal range.

Induction of chromosome aberrations by the test item has been investigated in Chinese hamster ovary cells in vitro in the presence (induced rat liver S9) and absence of metabolic activation. A close analogue of the test item did not induce chromosome aberrations in tests concentrations up to 16 µg/ml (with metabolic activation) or 50 µg/ml (without metabolic activation) under these test conditions.

Induction of mammalian cell gene mutations in vitro has been investigated in mouse lymphoma L5178Y cells in the presence (rat liver S9) and absence of metabolic activation. A close analogue of the test item did not induce gene mutations in concentrations up to 0.5 µg/ml under the tested conditions.

Link to relevant study records

Referenceopen allclose all

Endpoint:
in vitro gene mutation study in bacteria
Remarks:
Type of genotoxicity: gene mutation
Type of information:
experimental study
Adequacy of study:
key study
Study period:
From 14 JUL 2006 to 25 JUL 2006
Reliability:
1 (reliable without restriction)
Rationale for reliability incl. deficiencies:
other: Guideline study (OECD TG 471), with Prival modification for azo-dyes
Qualifier:
according to guideline
Guideline:
OECD Guideline 471 (Bacterial Reverse Mutation Assay)
Deviations:
no
GLP compliance:
yes (incl. QA statement)
Remarks:
in accordance with German Chemikaliengesetz and Directive 88/320/EEC
Type of assay:
bacterial reverse mutation assay
Species / strain / cell type:
S. typhimurium TA 1535, TA 1537, TA 98 and TA 100
Additional strain / cell type characteristics:
not specified
Species / strain / cell type:
E. coli WP2 uvr A
Additional strain / cell type characteristics:
not specified
Metabolic activation:
with and without
Metabolic activation system:
rat liver S9 (experiment I); hamster liver S9 (experiment II)
Test concentrations with justification for top dose:
Experiment I: 3, 10, 33, 100, 333, 1000, 2500, 5000 µg/plate
Experiment II: 33, 100, 333, 1000, 2500, 5000 µg/plate
Vehicle / solvent:
- Vehicle(s)/solvent(s) used: DMSO
- Justification for choice of solvent/vehicle: solubility properties of the solvent and its relative non-toxicity to the bacteria
Untreated negative controls:
yes
Negative solvent / vehicle controls:
yes
True negative controls:
no
Positive controls:
yes
Positive control substance:
other: sodium azide (TA 1535 and TA 100), 4-Nitro-o-phenylene-diamine (TA 1537 and TA 98), methyl methane sulfonate (WP2 uvrA)
Remarks:
without metabolic activation
Untreated negative controls:
yes
Negative solvent / vehicle controls:
yes
True negative controls:
no
Positive controls:
yes
Positive control substance:
other: 2-aminoanthracene
Remarks:
with metabolic activation (rat liver S9 mix)
Untreated negative controls:
yes
Negative solvent / vehicle controls:
yes
True negative controls:
no
Positive controls:
yes
Positive control substance:
other: 2-aminoanthracene (TA 1535, TA 100, TA 1537, WP2 uvrA), congo red (TA 98)
Remarks:
with metabolic activation (hamster liver S9 mix)
Details on test system and experimental conditions:
METHOD OF APPLICATION:
Experiment I: plate incorporation assay with induced rat liver S9 mix (induction with phenobarbital/ß-naphthoflavone)
Experiment II: preincubation assay with non-induced hamster liver S9 mix

DURATION
- Preincubation period: Experiment II: 30° C for 30 up to 35 (strains TA 98, TA 100, WP2 uvrA) minutes
- Exposure duration: at least 48 hours

NUMBER OF REPLICATIONS: 3 plates per strain and dose level, including the controls

Evaluation criteria:
A test item is considered as a mutagen if a biologically relevant increase in the number of revertants exceeding the threshold of twice (strains TA 98, TA 100, WP2 uvrA) or thrice (strains TA 1535, TA 1537) the colony count of the corresponding solvent colony is observed.

A dose dependent increase is considered biologically relevant if the threshold is exceeded at more than one concentration.

An increase exceeding the threshold at only one concentration is judged as biologically relevant if reproduced in an independent second experiment.
A dose dependent increase in the number of revertant colonies below the thresshold is regarded as an indication of mutagenic potential if reproduced in an independent second experiment. however, whenever the colony counts remain within the historical range of negative annd solvent controls such as an increase is not considered biologically relevant.
Statistics:
Arithmetic means and standard deviation of the counted colonies were calculated.
Species / strain:
S. typhimurium TA 1535, TA 1537, TA 98 and TA 100
Metabolic activation:
with and without
Genotoxicity:
negative
Cytotoxicity / choice of top concentrations:
no cytotoxicity
Vehicle controls validity:
valid
Untreated negative controls validity:
valid
Positive controls validity:
valid
Species / strain:
E. coli WP2 uvr A
Metabolic activation:
with and without
Genotoxicity:
negative
Cytotoxicity / choice of top concentrations:
no cytotoxicity
Vehicle controls validity:
valid
Untreated negative controls validity:
valid
Positive controls validity:
valid
Additional information on results:
TEST-SPECIFIC CONFOUNDING FACTORS
- Precipitation: of the test item occured at concentrations of 1000 µg/plate and more. Nevertheless the colonies could be counted manually.

COMPARISON WITH HISTORICAL CONTROL DATA: there were no biologically relevant deviations
Remarks on result:
other: all strains/cell types tested
Remarks:
Migrated from field 'Test system'.

The test item showed no mutagenic activity in both experiments (plate incorporation assay, preincubation assay) each with and without metabolic activation.

Conclusions:
Interpretation of results (migrated information):
negative

The test item did not exert mutagenic activity in the reverse bacterial mutation assay (plate incorporation assay and pre-incubation assay according to Prival) with and without metabolic activation.
Executive summary:

Mutagenic activity of the test item was investigated in Salmonella typhimurium strains TA 1535, TA 1537, TA98 and TA100 as well as Escherichia coli strain WP2 uvrA with (induced rat liver S9 mix) and without metabolic activation at concentrations of 3, 10, 33, 100, 333, 1000, 2500 and 5000 µg/plate using the plate incorporation assay. Due to the test items characteristic as an azo-dye the test was also conducted using the Prival modification, i.e. testing the above mentioned bacterial strains in the preincubation assay with uninduced hamster liver S9 mix for metabolic activation. This test was performed using the concentrations 33, 100, 333, 1000, 2500 and 5000 µg/plate.

The test item did not reveal any mutagenic activity under the conditions tested. The appropriate reference mutagenes showed distinct positive mutagenic effects.

Endpoint:
in vitro DNA damage and/or repair study
Remarks:
Type of genotoxicity: DNA damage and/or repair
Type of information:
experimental study
Adequacy of study:
key study
Study period:
From 25 MAR 1985 to 29 APR 1985
Reliability:
2 (reliable with restrictions)
Rationale for reliability incl. deficiencies:
other: comparable to guideline study with acceptable restrictions (e.g. no replication of study results, purity and compositions of test item not given)
Qualifier:
equivalent or similar to guideline
Guideline:
OECD Guideline 482 (Genetic Toxicology: DNA Damage and Repair, Unscheduled DNA Synthesis in Mammalian Cells In Vitro)
Deviations:
not applicable
GLP compliance:
not specified
Type of assay:
DNA damage and repair assay, unscheduled DNA synthesis in mammalian cells in vitro
Species / strain / cell type:
hepatocytes: rat
Additional strain / cell type characteristics:
not specified
Metabolic activation:
without
Test concentrations with justification for top dose:
2, 10, 50, 250 µg/ml
Vehicle / solvent:
ethyl alcohol
Untreated negative controls:
yes
Negative solvent / vehicle controls:
yes
True negative controls:
no
Positive controls:
yes
Positive control substance:
N-dimethylnitrosamine
Species / strain:
hepatocytes: rat
Metabolic activation:
without
Genotoxicity:
negative
Cytotoxicity / choice of top concentrations:
no cytotoxicity
Vehicle controls validity:
valid
Untreated negative controls validity:
valid
Positive controls validity:
valid
Additional information on results:
TEST-SPECIFIC CONFOUNDING FACTORS
- Precipitation: At the concentrations of 500 and 1000 µg/ml strong precipitations of the test substance rendered impossible any microscopical evaluation of the specimens in the pretest. Therefore, 250 µg/ml was chosen as the highest concentration.

Remarks on result:
other: all strains/cell types tested
Remarks:
Migrated from field 'Test system'.

The test item did not increase the mean value of silver grains per nucleus in comparison to controls. The positive control substance (100 mM) yielded a marked increase in the mean value of silver grains per nucleus.

Conclusions:
Interpretation of results:
negative

There was no evidence of induction of DNA damage by the test item under the given experimental conditions.
Executive summary:

The test item was tested for DNA-damaging effects on rat hepatocytes in vitro. The investigations were performed with concentrations of 2, 10, 50 and 250 µg/ml. Testing of higher concentrations was not possible, because higher concentrations caused strong precipitations which rendered the microscopical evaluation of the specimens impossible. There were no marked differences in the number of silver grains per nucleus in the vehicle control and in the cultures treated with the various concentrations of the test item. The results with the positive control substance were within the normal range.

Endpoint:
in vitro DNA damage and/or repair study
Remarks:
Type of genotoxicity: DNA damage and/or repair
Type of information:
experimental study
Adequacy of study:
key study
Study period:
From 16 APR 1985 to 7 MAY 1985
Reliability:
2 (reliable with restrictions)
Rationale for reliability incl. deficiencies:
other: comparable to guideline study with acceptable restrictions (e.g. no replication of study results, purity and composition of test item not given)
Qualifier:
equivalent or similar to guideline
Guideline:
OECD Guideline 482 (Genetic Toxicology: DNA Damage and Repair, Unscheduled DNA Synthesis in Mammalian Cells In Vitro)
Deviations:
not applicable
GLP compliance:
not specified
Type of assay:
DNA damage and repair assay, unscheduled DNA synthesis in mammalian cells in vitro
Species / strain / cell type:
other: human fibroblasts (CRL 1121)
Additional strain / cell type characteristics:
not specified
Metabolic activation:
without
Test concentrations with justification for top dose:
2, 10, 50, 250 µg/ml
Vehicle / solvent:
ethyl alcohol
Untreated negative controls:
yes
Negative solvent / vehicle controls:
yes
True negative controls:
no
Positive controls:
yes
Positive control substance:
4-nitroquinoline-N-oxide
Species / strain:
other: human fibroblasts (CRL 1121)
Metabolic activation:
without
Genotoxicity:
negative
Cytotoxicity / choice of top concentrations:
no cytotoxicity
Vehicle controls validity:
valid
Untreated negative controls validity:
valid
Positive controls validity:
valid
Additional information on results:
TEST-SPECIFIC CONFOUNDING FACTORS
- Precipitation: At the concentrations of 500 and 1000 µg/ml strong precipitations of the test substance rendered impossible any microscopical evaluation of the specimens in the pretest. Therefore, 250 µg/ml was chosen as the highest concentration.

Remarks on result:
other: all strains/cell types tested
Remarks:
Migrated from field 'Test system'.

The test item did not increase the mean value of silver grains per nucleus in comparison to controls. The positive control substance (5 µM) yielded a marked increase in the mean value of silver grains per nucleus.

Conclusions:
Interpretation of results (migrated information):
negative

There was no evidence of induction of DNA damage by the test item under the given experimental conditions.
Executive summary:

The test item was tested for DNA-damaging effects on human fibroblasts in vitro. The investigations were performed with concentrations of 2, 10, 50 and 250 µg/ml. Testing of higher concentrations was not possible, because higher concentrations caused strong precipitations which rendered the microscopical evaluation of the specimens impossible. There were no marked differences in the number of silver grains per nucleus in the vehicle control and in the cultures treated with the various concentrations of the test item. The results with the positive control substance were within the normal range.

Endpoint:
in vitro DNA damage and/or repair study
Remarks:
Type of genotoxicity: DNA damage and/or repair
Type of information:
read-across from supporting substance (structural analogue or surrogate)
Adequacy of study:
key study
Justification for type of information:
See read across jusitification document in chapter 13
Reason / purpose for cross-reference:
read-across source
Type of assay:
DNA damage and repair assay, unscheduled DNA synthesis in mammalian cells in vitro
Vehicle / solvent:
ethyl alcohol
Key result
Species / strain:
other: human fibroblasts (CRL 1121)
Metabolic activation:
without
Genotoxicity:
negative
Cytotoxicity / choice of top concentrations:
no cytotoxicity
Vehicle controls validity:
valid
Untreated negative controls validity:
valid
Positive controls validity:
valid
Endpoint:
in vitro DNA damage and/or repair study
Type of information:
read-across from supporting substance (structural analogue or surrogate)
Adequacy of study:
key study
Justification for type of information:
See read across justification document in chapter 13
Reason / purpose for cross-reference:
read-across source
Species / strain / cell type:
hepatocytes: rat
Additional strain / cell type characteristics:
not specified
Metabolic activation:
without
Key result
Species / strain:
hepatocytes: rat
Metabolic activation:
without
Genotoxicity:
negative
Cytotoxicity / choice of top concentrations:
no cytotoxicity
Vehicle controls validity:
valid
Untreated negative controls validity:
valid
Positive controls validity:
valid
Executive summary:

The test item was tested for DNA-damaging effects on rat hepatocytes in vitro. The investigations were performed with concentrations of 2, 10, 50 and 250 µg/ml. Testing of higher concentrations was not possible, because higher concentrations caused strong precipitations which rendered the microscopical evaluation of the specimens impossible. There were no marked differences in the number of silver grains per nucleus in the vehicle control and in the cultures treated with the various concentrations of the test item. The results with the positive control substance were within the normal range.

Endpoint:
in vitro gene mutation study in bacteria
Remarks:
Type of genotoxicity: gene mutation
Type of information:
experimental study
Adequacy of study:
key study
Study period:
year of publication: 1987
Reliability:
2 (reliable with restrictions)
Rationale for reliability incl. deficiencies:
study well documented, meets generally accepted scientific principles, acceptable for assessment
Qualifier:
equivalent or similar to guideline
Guideline:
OECD Guideline 471 (Bacterial Reverse Mutation Assay)
GLP compliance:
not specified
Type of assay:
bacterial reverse mutation assay
Species / strain / cell type:
S. typhimurium TA 1535, TA 1537, TA 98 and TA 100
Additional strain / cell type characteristics:
not specified
Metabolic activation:
with and without
Metabolic activation system:
Aroclor 1254-induced rat or hamster liver S9 mix
Test concentrations with justification for top dose:
100, 333, 1000, 3333, 10000 µg/plate
Vehicle / solvent:
- Vehicle(s)/solvent(s) used: DMSO
Untreated negative controls:
no
Negative solvent / vehicle controls:
yes
True negative controls:
no
Positive controls:
yes
Positive control substance:
other: sodium azide (TA 1535, TA 100), 9-aminoacridine (TA 1537), 4-nitro-o-phenylenediamine (TA98)
Remarks:
without metabolic activation
Untreated negative controls:
no
Negative solvent / vehicle controls:
yes
True negative controls:
no
Positive controls:
yes
Positive control substance:
other: 2-aminoanthracene
Remarks:
with metabolic activation
Details on test system and experimental conditions:
METHOD OF APPLICATION: preincubation

DURATION
- Preincubation period: 20 minutes 37°C without shaking
- Exposure duration: 2 days

NUMBER OF REPLICATIONS: 3 plates per strain and dose level, including the controls; experiments were repeated

Evaluation criteria:
An individual trial was judged as:
- mutagenic: if dose-related increase over the corresponding solvent control was seen
- weakly mutagenic: if low-level dose response
- questionable: if dose-related increase was judged to be insufficiently high to be called weakly mutagenic or only a single dose was elevated or a non -dose-related increase was seen

A chemical was judged mutagenic, if it produced a reproducible, dose-related increase in revertants over the corresponding solvent control in replicate trials.
Key result
Species / strain:
S. typhimurium TA 1535, TA 1537, TA 98 and TA 100
Metabolic activation:
with and without
Genotoxicity:
negative
Cytotoxicity / choice of top concentrations:
no cytotoxicity
Vehicle controls validity:
valid
Untreated negative controls validity:
not examined
Positive controls validity:
valid
Additional information on results:
TEST-SPECIFIC CONFOUNDING FACTORS
- Precipitation: was observed at all tested concentrations, the revertant colonies were counted manually

Remarks on result:
other: all strains/cell types tested

The test item showed no mutagenic activity in the preincubation test performed with modifications similar to Prival with (induced rat and hamster liver S9) and without metabolic activation.

Conclusions:
Interpretation of results:
negative

The test item did not exert mutagenic activity in the reverse bacterial mutation assay (preincubation assay, also with Prival modification) with and without metabolic activation.
Executive summary:

Mutagenic activity of the test item was investigated in Salmonella typhimurium strains TA 1535, TA 1537, TA98 and TA100 with (Aroclor 1254-induced rat liver S9 mix or with Aroclor 1254-induced hamster liver S9 mix; i.e. modified Prival test) and without metabolic activation at concentrations of 100, 333, 1000, 3333 and 10000 µg/plate using the preincubation method.


The test item did not reveal any mutagenic activity under the conditions tested. The appropriate reference mutagenes showed distinct positive mutagenic effects.

Endpoint:
in vitro cytogenicity / chromosome aberration study in mammalian cells
Remarks:
Type of genotoxicity: chromosome aberration
Type of information:
experimental study
Adequacy of study:
key study
Study period:
year of publication: 1984
Reliability:
2 (reliable with restrictions)
Rationale for reliability incl. deficiencies:
comparable to guideline study with acceptable restrictions
Principles of method if other than guideline:
in vitro mammalian chromosome aberration test: NTP-Chinese hamster Ovary Cell Cytogenetics
GLP compliance:
not specified
Type of assay:
in vitro mammalian chromosome aberration test
Species / strain / cell type:
Chinese hamster Ovary (CHO)
Additional strain / cell type characteristics:
not specified
Metabolic activation:
with and without
Metabolic activation system:
S9 mix from Aroclor 1254-induced male Sprague Dawley rats
Test concentrations with justification for top dose:
1.6, 5, 16, 50, 160 µg/ml without metabolic activation (highest concentration not evaluated)
0.5, 1.6, 5, 16, 50 µg/ml with metabolic activation (highest concentration not evaluated)
Vehicle / solvent:
- Vehicle(s)/solvent(s) used: dimethylsulfoxide (DMSO)
Untreated negative controls:
no
Negative solvent / vehicle controls:
yes
True negative controls:
no
Positive controls:
yes
Positive control substance:
cyclophosphamide
Remarks:
with metabolic activation
Untreated negative controls:
no
Negative solvent / vehicle controls:
yes
True negative controls:
no
Positive controls:
yes
Positive control substance:
mitomycin C
Remarks:
without metabolic activation
Details on test system and experimental conditions:
METHOD OF APPLICATION: in medium

DURATION
- Exposure duration: 8-12 h without metabolic activation; 2 h with metabolic activation
- Expression time (cells in growth medium): 10 h (with metabolic activation)
- Selection time (if incubation with a selection agent): 2 h
- Fixation time (start of exposure up to fixation or harvest of cells): up to 12 h


SPINDLE INHIBITOR (cytogenetic assays): colcemid
STAIN (for cytogenetic assays): Giemsa


NUMBER OF REPLICATIONS: no data


NUMBER OF CELLS EVALUATED: 100 first-division metaphase cells; only 50 first-division metaphase cells for the second dose of the positive control Mitomycin C


OTHER EXAMINATIONS:
- "simple" aberrations: breaks and terminal deletions
- complex" aberrations: rearrangements and translocations
- "other" aberrations: pulverized cells, despiralized chromosomes, cells containing 10 or more aberrations

Evaluation criteria:
For a positive response the presence of a dose-response and the significance of the individual dose points compared to the vehicle control were mandatory.
Key result
Species / strain:
Chinese hamster Ovary (CHO)
Metabolic activation:
with and without
Genotoxicity:
negative
Cytotoxicity / choice of top concentrations:
not specified
Vehicle controls validity:
valid
Untreated negative controls validity:
not examined
Positive controls validity:
valid

Frequency of effects:

Without metabolic activation:

1, 1, 2, 2% cells with aberrations at 1.6, 5.0, 16 and 50 µg/ml, respectively; DMSO control: 1%

With metabolic activation:

2, 1, 4, 0% cells with aberrations at 0,5, 1.6, 5.0 and 16 µg/ml, respectively; DMSO control: 1%

Conclusions:
Interpretation of results:
negative with metabolic activation
negative without metabolic activation

The test item Diarylanilide yellow did not induce chromosome aberrations under the conditions tested.
Executive summary:

Induction of chromosome aberrations by the test item has been investigated in Chinese hamster ovary cells in vitro in the presence (induced rat liver S9) and absence of metabolic activation. The test item did not induce chromosome aberrations in tests concentrations up to 16 µg/ml (with metabolic activation) or 50 µg/ml (without metabolic activation) under these test conditions.

Endpoint:
in vitro gene mutation study in mammalian cells
Remarks:
Type of genotoxicity: gene mutation
Type of information:
experimental study
Adequacy of study:
key study
Study period:
no data
Reliability:
2 (reliable with restrictions)
Rationale for reliability incl. deficiencies:
study well documented, meets generally accepted scientific principles, acceptable for assessment
Qualifier:
equivalent or similar to guideline
Guideline:
OECD Guideline 476 (In Vitro Mammalian Cell Gene Mutation Test)
Principles of method if other than guideline:
Mouse Lymphoma Study
GLP compliance:
not specified
Type of assay:
mammalian cell gene mutation assay
Target gene:
thymidine kinase locus
Species / strain / cell type:
mouse lymphoma L5178Y cells
Additional strain / cell type characteristics:
not specified
Metabolic activation:
with and without
Metabolic activation system:
S9 from the livers of either Aroclor 1254-induced or non-induced male Fischer 344 rats
Test concentrations with justification for top dose:
0.0312, 0.0625, 0.125, 0.25, 0.5 µg/ml (Nonactivation Trial 1)
0.1, 0.2, 0.3, 0.4, 0.5 (Nonactivation Trial 2; Induced S9 Trial 1, 2, 3)
Vehicle / solvent:
- Vehicle(s)/solvent(s) used: dimethylsulfoxide (DMSO)

Untreated negative controls:
no
Negative solvent / vehicle controls:
yes
True negative controls:
no
Positive controls:
yes
Positive control substance:
other: methylmethanesulfonate, ethylmethanesulphonate
Remarks:
without metabolic activation
Untreated negative controls:
no
Negative solvent / vehicle controls:
yes
True negative controls:
no
Positive controls:
yes
Positive control substance:
3-methylcholanthrene
Remarks:
with metabolic activation
Details on test system and experimental conditions:
METHOD OF APPLICATION: in medium

DURATION
- Exposure duration: 4 h
- Expression time (cells in growth medium): 48 h
- Selection time (if incubation with a selection agent): 10-12 days


SELECTION AGENT (mutation assays): trifluorothymidine


NUMBER OF REPLICATIONS: all treatment levels within an experiment were performed in duplicate; experiments were performed twice (nonactivated) or in triplicate (S9)


DETERMINATION OF CYTOTOXICITY
- Method: cloning efficiency
Statistics:
statistical analysis for trend and peak responses
Key result
Species / strain:
mouse lymphoma L5178Y cells
Metabolic activation:
without
Genotoxicity:
negative
Cytotoxicity / choice of top concentrations:
no cytotoxicity
Vehicle controls validity:
valid
Untreated negative controls validity:
not examined
Positive controls validity:
valid
Key result
Species / strain:
mouse lymphoma L5178Y cells
Metabolic activation:
with
Genotoxicity:
negative
Cytotoxicity / choice of top concentrations:
no cytotoxicity
Vehicle controls validity:
valid
Untreated negative controls validity:
not examined
Positive controls validity:
valid
Remarks on result:
other: all strains/cell types tested

- results without metabolic activation were negative in two replicates, the tested concentrations were non-toxic

Trial 1 (mean mutant frequency): 36, 40, 44, 40 and 46 at 0.03, 0.06, 0.125, 0.25 and 0.5 µg/ml; DMSO control: 31

Trial 2 (mean mutant frequency): 30, 30, 45, 38 and 37 at 0.1, 0.2, 0.3, 0.4 and 0.5 µg/ml; DMSO control: 30

- with metabolic activation one trial revealed increased mutant frequencies at concentrations >/= 0.2 µg/ml in comparison to the vehicle control, but without dose response relationship; in two further trials negative responses were observed

Trial 1 (mean mutant frequency): 25, 61, 68, 69 and 62 at 0.1, 0.2, 0.3, 0.4 and 0.5 µg/ml; DMSO control: 30

Trial 2 (mean mutant frequency): 48, 57, 62, 61 and 60 at 0.1, 0.2, 0.3, 0.4 and 0.5 µg/ml; DMSO control: 54

Trial 3 (mean mutant frequency): 79, 68, 76, 94 and 88 at 0.1, 0.2, 0.3, 0.4 and 0.5 µg/ml; DMSO control: 71

- solvent and positve controls were within the normal range

Conclusions:
Interpretation of results:
negative with metabolic activation
negative without metabolic activation

The test item did not induce mammalian cell gene mutations under the conditions tested.

Executive summary:

Induction of mammalian cell gene mutations in vitro has been investigated in mouse lymphoma L5178Y cells in the presence (rat liver S9) and absence of metabolic activation. The test item did not induce gene mutations in concentrations up to 0.5 µg/ml under the tested conditions.

Endpoint:
in vitro gene mutation study in bacteria
Remarks:
Type of genotoxicity: gene mutation
Type of information:
read-across from supporting substance (structural analogue or surrogate)
Adequacy of study:
key study
Justification for type of information:
Please refer to attached read across justification document (Chapter 13).
Reason / purpose for cross-reference:
read-across source
Species / strain / cell type:
S. typhimurium TA 1535, TA 1537, TA 98 and TA 100
Additional strain / cell type characteristics:
not specified
Key result
Species / strain:
S. typhimurium TA 1535, TA 1537, TA 98 and TA 100
Metabolic activation:
with and without
Genotoxicity:
negative
Cytotoxicity / choice of top concentrations:
no cytotoxicity
Vehicle controls validity:
valid
Untreated negative controls validity:
not examined
Positive controls validity:
valid
Conclusions:
The toxicity potential of registration substance is assessed using analogue approach.
Interpretation of results:
negative

The test item did not exert mutagenic activity in the reverse bacterial mutation assay (preincubation assay, also with Prival modification) with and without metabolic activation.
Executive summary:

The toxicity potential of registration substance is assessed using analogue approach.

Mutagenic activity of the test item was investigated in Salmonella typhimurium strains TA 1535, TA 1537, TA98 and TA100 with (Aroclor 1254-induced rat liver S9 mix or with Aroclor 1254-induced hamster liver S9 mix; i.e. modified Prival test) and without metabolic activation at concentrations of 100, 333, 1000, 3333 and 10000 µg/plate using the preincubation method.

The test item did not reveal any mutagenic activity under the conditions tested. The appropriate reference mutagenes showed distinct positive mutagenic effects.

Endpoint:
in vitro cytogenicity / chromosome aberration study in mammalian cells
Remarks:
Type of genotoxicity: chromosome aberration
Type of information:
read-across from supporting substance (structural analogue or surrogate)
Adequacy of study:
key study
Justification for type of information:
REPORTING FORMAT FOR THE ANALOGUE APPROACH
[Please provide information for all of the points below. Indicate if further information is included as attachment to the same record, or elsewhere in the dataset (insert links in 'Cross-reference' table)]

1. HYPOTHESIS FOR THE ANALOGUE APPROACH
Please refer to attached read across justification document (Chapter 13).

2. SOURCE AND TARGET CHEMICAL(S) (INCLUDING INFORMATION ON PURITY AND IMPURITIES)
Please refer to attached read across document (Chapter 13).

3. ANALOGUE APPROACH JUSTIFICATION
Please refer to attached read across justification document (Chapter 13).

4. DATA MATRIX
Please refer to attached read across justification document (Chapter 13).
Reason / purpose for cross-reference:
read-across source
Species / strain / cell type:
Chinese hamster Ovary (CHO)
Additional strain / cell type characteristics:
not specified
Key result
Species / strain:
Chinese hamster Ovary (CHO)
Metabolic activation:
with and without
Genotoxicity:
negative
Cytotoxicity / choice of top concentrations:
not specified
Vehicle controls validity:
valid
Untreated negative controls validity:
not examined
Positive controls validity:
valid
Conclusions:
The toxicity potential of registration substance is assessed using analogue approach.
Interpretation of results:
negative with metabolic activation
negative without metabolic activation

The test item Diarylanilide yellow did not induce chromosome aberrations under the conditions tested.
Executive summary:

The toxicity potential of registration substance is assessed using analogue approach.

Induction of chromosome aberrations by the test item has been investigated in Chinese hamster ovary cells in vitro in the presence (induced rat liver S9) and absence of metabolic activation. The test item did not induce chromosome aberrations in tests concentrations up to 16 µg/ml (with metabolic activation) or 50 µg/ml (without metabolic activation) under these test conditions.

Endpoint:
in vitro gene mutation study in mammalian cells
Remarks:
Type of genotoxicity: gene mutation
Type of information:
read-across from supporting substance (structural analogue or surrogate)
Adequacy of study:
key study
Justification for type of information:
REPORTING FORMAT FOR THE ANALOGUE APPROACH
[Please provide information for all of the points below. Indicate if further information is included as attachment to the same record, or elsewhere in the dataset (insert links in 'Cross-reference' table)]

1. HYPOTHESIS FOR THE ANALOGUE APPROACH
Please refer to attached read across justification document (Chapter 13).

2. SOURCE AND TARGET CHEMICAL(S) (INCLUDING INFORMATION ON PURITY AND IMPURITIES)
Please refer to attached read across document (Chapter 13).

3. ANALOGUE APPROACH JUSTIFICATION
Please refer to attached read across justification document (Chapter 13).

4. DATA MATRIX
Please refer to attached read across justification document (Chapter 13).
Reason / purpose for cross-reference:
read-across source
Species / strain / cell type:
mouse lymphoma L5178Y cells
Additional strain / cell type characteristics:
not specified
Key result
Species / strain:
mouse lymphoma L5178Y cells
Metabolic activation:
without
Genotoxicity:
negative
Cytotoxicity / choice of top concentrations:
no cytotoxicity
Vehicle controls validity:
valid
Untreated negative controls validity:
not examined
Positive controls validity:
valid
Key result
Species / strain:
mouse lymphoma L5178Y cells
Metabolic activation:
with
Genotoxicity:
negative
Cytotoxicity / choice of top concentrations:
no cytotoxicity
Vehicle controls validity:
valid
Untreated negative controls validity:
not examined
Positive controls validity:
valid
Remarks on result:
other: all strains/cell types tested
Conclusions:
Interpretation of results:
negative with metabolic activation
negative without metabolic activation

The toxicity potential of registration substance is assessed using analogue approach.
The test item did not induce mammalian cell gene mutations under the conditions tested.

Executive summary:

The toxicity potential of registration substance is assessed using analogue approach.

Induction of mammalian cell gene mutations in vitro has been investigated in mouse lymphoma L5178Y cells in the presence (rat liver S9) and absence of metabolic activation. The test item did not induce gene mutations in concentrations up to 0.5 µg/ml under the tested conditions.

Endpoint conclusion
Endpoint conclusion:
no adverse effect observed (negative)

Genetic toxicity in vivo

Endpoint conclusion
Endpoint conclusion:
no study available

Additional information

Justification for classification or non-classification

No classification

The test item did no show any potential for mutagenicity or DNA damage.