Registration Dossier
Registration Dossier
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 284-325-5 | CAS number: 84852-15-3
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data

Endpoint summary
Administrative data
Description of key information
Additional information
Melcer et al. (2007) conducted a literature review with regard to physical-chemical properties and environmental fate characteristics of alkylphenols and alkylphenol ethoxylates. The authors found that Nonylphenol released to the atmosphere is likely to be degraded by photo-oxidation with a half-life of approximately 5 hours. This result was calculated by using EPISuite v3.12 (U.S. Environmental Protection Agency (US EPA). (2000a) EPISuite. Estimation Program Interface (EPI) Suite Version 3.12. Washington, DC).
Ahel et al. (1994) found that the photochemical transformation of Nonylphenol in surface waters is also a significant route of abiotic degradation. From the experiments, which were conducted according to general accepted scientific standards, a half-life of 10-15 hours could be deduced for continuous clear sky, noon, summer sunlight conditions in the surface layer of natural waters. The photolysis rate in the deeper layers is strongly attenuated, being approximately 1.5 times slower at depths of 20-25 cm than at the surface.
Additional laboratory experiments by using a merry-go-round reactor (MGRR) have shown that the photochemical degradation of nonylphenol was due mainly to sensitized photolysis whilst direct photolysis was comparatively slow. Although sunlight photolysis rates of nonylphenol were found to be much slower than reported for some other alkylphenols (Faust and Hoigné, 1987, cited in Ahel et al., 1994), the results suggest that a significant portion (30 %) of these compounds could be photochemically degraded in the surface layer of natural waters within one day. Studies by Martinez-Zapata et al (2013) and Dulov et al (2013) considering indirect photochemical transformation of 4-n-nonylphenol, demonstrated a range of sensitizers that increased the photodegradation rate, including humic acids, Fe (III) and H2O2. pH was also demonstrated to affect phototransformation of nonylphenol. A first order reaction kinetics was adjusted to describe the photodegradation of 4n- nonylphenol with a half-life of 2.3 hours.
Hydrolysis is not assumed to be a dominant route of abiotic degradation for Nonylphenol, because of the chemical structure and particularly the lack of susceptible functional groups. This assumption is also supported by the EU Risk Assessment Report 2002 (p.54) which states that hydrolysis is a negligible removal processes for nonylphenol in the aquatic environment. This assumption is based upon the stability of nonylphenol during storage and several biodegradation studies reviewed by the UK rapporteur on behalf of the European Union where no degradation was observed in the control experiments. The authors of these studies concluded that abiotic degradation was likely to be negligible (Corti et al., 1995; Trocmé et al., 1988; both cited in the EU Risk Assessment Report 2002).
These findings indicate that photo-oxidation and photochemical transformation, in contrary to hydrolysis, can be important removal processes for nonylphenol released to water and air, whereas hydrolysis is not.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.

EU Privacy Disclaimer
This website uses cookies to ensure you get the best experience on our websites.