Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 246-805-2 | CAS number: 25306-75-6
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Endpoint summary
Administrative data
Description of key information
Additional information
Solid sodium isobutyl xanthate is hygroscopic, absorbing moisture leading to decompositon and releasing carbon disulfide. Decomposition rate increases with increase in temperature and decrease pH.
This instability is under acidic and alkaline conditions
Decomposition of xanthates depends on temperature and NaOH concentration in water:
-dx/dt = k1x + k2x [NaOH]2
At 650C for: sodium ethyl xanthate(CAS# 140-90-9): k1 = 9.7 10-4min-1and k2 = 3.3 10-4
sodium isopropyl xanthate(CAS# 140-93-2): k1 = 2.0 10-4min-1and k2 = 6.1 10-5
sodium n-butyl xanthate(CAS# 141-33-3): k1 = 6.4 10-4min-1and k2 = 2.4 10-5
At 750C for: sodium ethyl xanthate(CAS# 140-90-9): k1 = 2.1 10-3min-1and k2 = 6.3 10-4
sodium isopropyl xanthate(CAS# 140-93-2): k1 = 4.2 10-4min-1and k2 = 1.2 10-4
sodium n-butyl xanthate(CAS# 141-33-3): k1 = 1.4 10-3min-1and k2 = 4.6 10-4
It was found that the minimum of xanthates decomposition rate is at pH range from 7 to 9.
Investigation of potassium ethyl xanthate(CAS# 140-89-6)water solution at pH 6-10 showed coexistence of xanthate ions, EtX-, dixanthogen , (EtX)2and carbon disulfide(CAS# 75-15-0).
Simultaneous reactions leading to decomposition of xanthate/or dixanthate species to alcohol and carbon disulfide were detected.
Decomposition of sodium ethyl xanthate as 40% solution at 200C would give rise to an increase in CS2concentration of approximately 0.1% per day.
Reactivity: Xantates react with oxidizing agents, acids and alkaline solutions. With strog acids the substance decomposes quantitatively producing carbon disulfide and an alcohol. In strong alkali solutions, at pH >13, react forming carbon disulfide, hydrogen, an alcohol, trithiocarbonate and sodium carbonate. Salts of copper, iron, lead or zinc accelerate decomposition of xanthates.
Reaction with strong oxidizing agents as peroxides, nitrates and perchlorates causing risk of fire and explosion.
Solid xanthates decompose exposed to moisture in air, releasing carbon disulfide.
Hydrolysis is a significant factor in determination the environmental fate of xanthates.
In neutral or mildly alkaline water solution, sodium ethyl xanthate decomposes to ethyl alcohol, carbon disulfide, sodium carbonate and sodium trihiocarbonate. (Full Public Report Sodium Ethyl Xanthate Priority Existing Chemical No. 5 May 1995Australian Government Publishing Service Canberra)
Water solutions are also relatively stable at temperature <180C and the pH within the range 10 - 11.(NICNAS. Sodium Ethyl Xanthate. Priority Existing Chemical, Secondary Assessment , Report No. 5S. February 2000)
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.