Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 200-849-9 | CAS number: 75-21-8
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Toxicological Summary
- Administrative data
- Workers - Hazard via inhalation route
- Workers - Hazard via dermal route
- Workers - Hazard for the eyes
- Additional information - workers
- General Population - Hazard via inhalation route
- General Population - Hazard via dermal route
- General Population - Hazard via oral route
- General Population - Hazard for the eyes
- Additional information - General Population
Administrative data
Workers - Hazard via inhalation route
Systemic effects
Long term exposure
- Hazard assessment conclusion:
- DMEL (Derived Minimum Effect Level)
- Value:
- 1.8 mg/m³
- Most sensitive endpoint:
- carcinogenicity
- Route of original study:
- By inhalation
DNEL related information
- DNEL derivation method:
- other: SCOEL value is used
Acute/short term exposure
- Hazard assessment conclusion:
- DNEL (Derived No Effect Level)
- Value:
- 10 mg/m³
- Most sensitive endpoint:
- neurotoxicity
- Route of original study:
- By inhalation
DNEL related information
- DNEL derivation method:
- ECHA REACH Guidance
- Overall assessment factor (AF):
- 10
- Dose descriptor starting point:
- NOAEC
- Value:
- 100 mg/m³
- Explanation for the modification of the dose descriptor starting point:
The point of departure for the acute DNEL is taken from the NOAEC of a subchronic toxicity study in monkeys which was 50 ppm (100 mg/m3; Setzer er al., Toxicol. Ind. Health 12, 667 -682; 1996). The neurotoxicity observed in this study could result from acute subclinical effects, therefore the NOEL is used in a conservative approach to derive an acute DNEL for neurotoxicity.
- AF for dose response relationship:
- 1
- AF for interspecies differences (allometric scaling):
- 2
- AF for other interspecies differences:
- 1
- AF for intraspecies differences:
- 5
- AF for the quality of the whole database:
- 1
- AF for remaining uncertainties:
- 1
Local effects
Long term exposure
- Hazard assessment conclusion:
- DMEL (Derived Minimum Effect Level)
- Value:
- 1.8 mg/m³
- Most sensitive endpoint:
- carcinogenicity
DNEL related information
- DNEL derivation method:
- other: The SCOEL is used.
Acute/short term exposure
- Hazard assessment conclusion:
- high hazard (no threshold derived)
DNEL related information
Workers - Hazard via dermal route
Systemic effects
Long term exposure
- Hazard assessment conclusion:
- high hazard (no threshold derived)
Acute/short term exposure
- Hazard assessment conclusion:
- high hazard (no threshold derived)
DNEL related information
Local effects
Long term exposure
- Hazard assessment conclusion:
- high hazard (no threshold derived)
Acute/short term exposure
- Hazard assessment conclusion:
- high hazard (no threshold derived)
Workers - Hazard for the eyes
Local effects
- Hazard assessment conclusion:
- medium hazard (no threshold derived)
Additional information - workers
Carcinogenicity in animal experiments is considered to be the critical endpoint for a chronic inhalation DNEL / DMEL. The Directive (EU) 2017/2398 of the European Parliament and of the Council of 12 December 2017 amending Directive 2004/37/EC on the protection of workers from the risks related to exposure to carcinogens or mutagend at work contains the following article: Ethylene oxide meets the criteria for classification as carcinogenic (category 1B) in accordance with Regulation (EC) No 1272/2008 and is therefore a carcinogen within the meaning of Directive 2004/37/EC. It is possible, on the basis of the available information, including scientific and technical data, to set a limit value for that carcinogen. SCOEL has identified, for ethylene oxide, the possibility of significant uptake through the skin. It is therefore appropriate to establish a limit value for ethylene oxide and to assign to it a notation indicating the possibility of significant uptake through the skin.
The limit value for occupational exposure (OEL) for ethylene oxide is 1.8 mg/m³ (= 1 ppm).
General Population - Hazard via inhalation route
Systemic effects
Long term exposure
- Hazard assessment conclusion:
- hazard unknown but no further hazard information necessary as no exposure expected
Acute/short term exposure
- Hazard assessment conclusion:
- hazard unknown but no further hazard information necessary as no exposure expected
DNEL related information
Local effects
Long term exposure
- Hazard assessment conclusion:
- hazard unknown but no further hazard information necessary as no exposure expected
Acute/short term exposure
- Hazard assessment conclusion:
- hazard unknown but no further hazard information necessary as no exposure expected
DNEL related information
General Population - Hazard via dermal route
Systemic effects
Long term exposure
- Hazard assessment conclusion:
- hazard unknown but no further hazard information necessary as no exposure expected
Acute/short term exposure
- Hazard assessment conclusion:
- hazard unknown but no further hazard information necessary as no exposure expected
DNEL related information
Local effects
Long term exposure
- Hazard assessment conclusion:
- hazard unknown but no further hazard information necessary as no exposure expected
Acute/short term exposure
- Hazard assessment conclusion:
- hazard unknown but no further hazard information necessary as no exposure expected
General Population - Hazard via oral route
Systemic effects
Long term exposure
- Hazard assessment conclusion:
- hazard unknown but no further hazard information necessary as no exposure expected
Acute/short term exposure
- Hazard assessment conclusion:
- hazard unknown but no further hazard information necessary as no exposure expected
DNEL related information
General Population - Hazard for the eyes
Local effects
- Hazard assessment conclusion:
- hazard unknown but no further hazard information necessary as no exposure expected
Additional information - General Population
No DNELs were recommended for the general population. As far as it is forseen, EO as a reactive compound is produced as a building block for chemical synthesis and used only within closed systems. Work place exposure is already strictly controlled and, according to present measurements, EO concentrations outside of the plants are not measurable. No foreseeable exposure of the general population is known under the scope of REACH.
No exposure via industrial processes should occur unless in the case of accidental release. For this scenario, however, meaningful values have already been designed elsewhere (AEGLs).
It should be noted that the hazard assessment conclusion is not suggested to be appropriate, because the hazard for the general population if exposed to EO is the same as pointed out for workers. However, there is minor or no risk for the general population being exposed to EO and thus, the more acurate conclusion in this case would be "no risk identified".
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.