Registration Dossier

Diss Factsheets

Administrative data

Description of key information

Sodium nitrate studies did not include enough parameters to derive a NOAEL for sodium nitrate. They all showed that high levels of sodium nitrate were without effects, giving an MTD for sodium nitrate of 2.2 g/kg bw/d. A reliable study with potassium nitrate is however available. This OECD 422 study did not show any effects up to the highest dose level tested (1500 mg/kg bw/day). The read-across rationale is attached in the target study record.

Based on an expert statement, a sub-chronic repeated dose toxicity study does not need to be conducted.

Key value for chemical safety assessment

Repeated dose toxicity: via oral route - systemic effects

Link to relevant study records
Reference
Endpoint:
short-term repeated dose toxicity: oral
Type of information:
experimental study
Adequacy of study:
key study
Study period:
January 7, 2002 – October 14, 2002
Reliability:
2 (reliable with restrictions)
Rationale for reliability incl. deficiencies:
guideline study with acceptable restrictions
Remarks:
The study was performed with a substance analogue and the data are read across.
Reason / purpose for cross-reference:
reference to same study
Qualifier:
according to guideline
Guideline:
OECD Guideline 422 (Combined Repeated Dose Toxicity Study with the Reproduction / Developmental Toxicity Screening Test)
GLP compliance:
yes
Limit test:
no
Species:
rat
Strain:
Wistar
Sex:
male/female
Details on test animals or test system and environmental conditions:
TEST ANIMALS
- Source: Charles River Laboratories, Raleigh, NC
- Age at study initiation: males were 64 days of age on day of arrival; females were 61 days of age on day of arrival
- Weight at study initiation: 225 – 325 grams for male rats; 161 – 219 for female rats
- Fasting period before study:
- Housing: Animals were individually housed except for during the cohabitation and lactation period in wire mesh suspended stainless steel cages which conformed with GLP requirements, During cohabitation each pair of rats were housed in the male rat’s cage. Beginning no later than Day 20 of gestation, female rats were individually housed in polyethylene shoebox cages containing nesting material with wire mesh lids. Each dam and litter was housed in a common nesting box during the lactation/postnatal period.
- Diet (e.g. ad libitum): Purina Certified Rodent Diet #5002; as libitum
- Water (e.g. ad libitum): automatic dispenser; ad libitum and when females and litters were housed in shoebox cages via water bottle; ad libitum
- Acclimation period: 12 days

ENVIRONMENTAL CONDITIONS
- Temperature (°C): 18 – 22
- Humidity (%): 43 – 66
- Air changes (per hr): no data
- Photoperiod (hrs dark / hrs light): 12 hrs

IN-LIFE DATES: Jan 8, 2002 – Feb 23, 2002
Route of administration:
oral: gavage
Vehicle:
water
Remarks:
distilled
Details on oral exposure:
Dose calculations: Individual doses were calculated based on the most recent weekly body weights and were adjusted each week to maintain the targeted dose level for all rats in the General Toxicity groups (i.e., mg/kg/day). For female rats in te Reproduction groups, individual doses were calculated based on the most recent body weights and were adjusted to maintain the targeted dose level (i.e., mg/kg/day). All doses were administered by volume of 10 mL/kg after correcting for concentration of the test mixture. Control animals received the vehicle only at the same volume as the test groups.

Dose preparations: The test substance (011101-3D) was ground in a Krups coffee mill (Model 203) prior to use and again upon receipt of additional test substance (020122-1D). A quantity sufficient to cover the grinding blade was added to the coffee mill and ground to a fine powder. Appropriate amounts of ground test material were accurately weighed into a 100 mL volumetric flask and diluted to volume with distilled water for each of the low, mid and high concentrations. Given that there was visual evidence (i.e. settling of test substance to bottom of cup) of a small amount of precipitate , the dosing mixtures were constantly stirred on a magnetic stir plate while being sampled to dose the test animals during the study.

Dose frequency: Each animal was dosed by oral intubation using a stainless steel balltipped gavage needle attached to an appropriate syringe. Dose administration was daily (7 days/week) for all adult animals as follows:
Male rats: Reproduction/General toxicity groups: during two-week premating and two-week mating periods for at least 28 days of exposure.
Female rats: Reproduction groups: during two-week premating, two-week mating, gestational and lactational periods. General Toxicity groups: for at least 28 days of exposure.

Analytical verification of doses or concentrations:
yes
Details on analytical verification of doses or concentrations:
The test substance was assumed to be homogenous and stable at the time drawn by syringe to dose the test animals. Analysis of dosing mixtures, therefore, were limited to concentration verification of representative preparations intended for the control, low, intermediate and high dose levels in the study. Representative dosing mixtures of each concentration during the study were provided to the analytical department at three time points during the study (prior to animal exposure, near the middle (Test days 24 and 28) and near the end of the study (Test day 45). Vehicle control samples were inadvertently not submitted for analysis. Each dose preparation was evaluated by flame atomic absorption spectroscopy for total potassium (SOAC Official Method 975.03)(1988). A reference standard of potassium (999 ug/ml) , supplied by EM Science, was used for calibration.
Duration of treatment / exposure:
Animals on the study were divided between two subgroups (toxicity and reproductive subgroups). The exposure period for males and females in the toxicity subgroup was 28 days. The exposure period for reproductive subgroup males was at most 28 days. The exposure period for reproductive subgroup females was at most 53 days (14 days pre-mating, 14 days mating, and gestational and lactational periods up to lactation day 4).
Frequency of treatment:
daily
Remarks:
Doses / Concentrations:
0, 250, 750 and 1,500 mg/kg/day
Basis:
actual ingested
No. of animals per sex per dose:
5
Details on study design:
- Dose selection rationale: Doses were selected based on parameters assessed in a range-finding study at concentrations up to 1,000 mg/kg/day.
Positive control:
not applicable
Observations and examinations performed and frequency:
CAGE SIDE OBSERVATIONS: Yes
- Time schedule: Twice daily for viability and cage-side observations were performed daily during acclimation, premating and mating, gestation, and lactation periods, except when scheduled detailed observations were conducted. All observations were recorded.

DETAILED CLINICAL OBSERVATIONS: Yes
- Time schedule: Observations were performed and recorded at least once during the acclimation period for all male and female rats. Observations were performed and recorded approximately once per week during the premating and mating periods for females of the reproduction groups during the gestational days (GD7, GD14 and GD20) and lactational (LD4 only) periods. Female rats were evaluated for adverse clinical signs during parturition. Maternal behavior was checked on LD0 and LD4 and recorded. The date and clock time of all observations and/or mortality checks was recorded.

BODY WEIGHT: Yes
- Time schedule for examinations: Individual body weights were recorded at least twice during the acclimation period (including the day after receipt) before pairing and mating. All male rats were weighed weekly during the premating and mating periods and at the time of sacrifice. Mated females were weighted on GD0, 7, 14 and 20, and on the day of delivery (LD0) and LD4 (prior to terminal sacrifice). Females showing no evidence of mating were assigned a GD0 after cessation of cohabitation and body weights were measured accordingly. Females in the General Toxicity Groups were weighed weekly and at the time of sacrifice. Body weight gains were calculated for males and females during each appropriate interval.

FOOD CONSUMPTION: Yes: Although not a feeding study, food consumption was determined weekly during the premating period (no mating period) for all males and females. Individual food consumption was measured and recorded weekly thereafter for the females in the general toxicity groups and during the gestational period for the females in the reproductive groups. Food consumption was also recorded on LD0 and LD4. The data were then used to calculate food efficiency for the associated intervals.

FOOD EFFICIENCY: Data from food consumption were used to determine food efficiency for associated intervals.

OPHTHALMOSCOPIC EXAMINATION: Yes
- Time schedule for examinations: See detailed clinical observations

HAEMATOLOGY: Yes
- Time schedule for collection of blood: Day 28 of treatment
- Anaesthetic used for blood collection: Yes. Isoflourane anesthesia ) collected via orbital sinus bleeding.
- Animals fasted: Yes, 18 hours prior to blood collection
- How many animals: 5 males and 5 females/dose level
- Parameters examined: hematocrit, hemoglobin concentration, erythrocyte count, total and differential leukocyte count, platelet count, prothrombin time and activated partial thromboplastin time.

CLINICAL CHEMISTRY: Yes
- Time schedule for collection of blood: on Day 28 of treatment
- Animals fasted: Yes. 18 hours prior to blood collection
- How many animals: 5 males and 5 females/dose level
- Parameters examined: calcium, phosphorus, chloride, sodium, potassium, fasting glucose, serum alanine aminotransferase (SGPT), serum aspartate aminotransferase (SGOT), gamma glutamyl transpeptidase, urea nitrogen, albumin, blood creatinine, total bilirubin, total serum protein, globulin, total cholesterol, alkaline phosphatase and magnesium measurements.

NEUROBEHAVIOURAL EXAMINATION: Yes
- Time schedule for examinations: during the final days of treatment
- Dose groups that were examined: Five male and five females/dose group (including controls).
- Battery of functions tested: sensory activity / grip strength / motor activity: excitability, autonomic function, gait and sensorimotor coordination (open field and manipulative evaluations), reactivity and sensitivity (elicited behavior) and other abnormal clinical signs including but not limited to convulsions, tremors, unusual or bizarre behavior, emaciation, dehydration, and general appearance. The rats were observed in random without the observer aware of the dose group.

Motor activity was also evaluated. Each animal was evaluated for a single one-hour phase, with photobeam counts accumulated over six, 10-minute intervals. Total movements (consisting of fine and active movements) was considered an appropriate measure for the assessment of potential behavior effects in this screening level study.)
Sacrifice and pathology:
GROSS PATHOLOGY: Yes
ORGAN WEIGHTS: Yes
HISTOPATHOLOGY: Yes
- General Toxicology Groups: At scheduled sacrifice, all survivors were euthanized by exsanguination from the abdominal aorta under isoflourane anesthesia. All animals were subjected to a full necropsy that included examination of the external surface of the body, all orifices and the thoracic, abdominal and cranial cavities and their contents. The liver, kidneys, adrenals, brain, heart, thymus, spleen, ovaries, testes and epididymides (of all animals sacrificed by design) were weighed wet as soon as possible after dissection to avoid drying. The following organs and tissues from all animals were preserved in NBF for possible future histopathological examination: all gross lesions, lungs, brain- including sections of the medulla/pons, cerebellar cortex and cerebral cortex, spinal cord (3 levels: cervical, mid-thoracic, and lumbar), eyes, pituitary, thyroid/parathyroid, thymus, trachea, heart, sternum with bone marrow, salivary glands, liver, spleen, kidneys, adrenals, pancreas, ovaries, testes, uterus (with attached urinary bladder, cervix and vagina), accessory sex organs (epididymides, prostate, and seminal vesicles), female mammary gland, skin, aorta, esophagus, stomach, duodenum, jejunum, ileum, cecum, colon, rectum, representative lymph node, and peripheral nerve (sciatic).

-Organs: Histopathologic examination was performed on the preserved organs and tissues of the Reproductive and General Toxicity Group animals from the control (Groups I and II) and high dose (Groups VII and VIII). In addition, gross lesions of potential toxicological significance noted in any test groups were also examined. Microscopic findings were graded.
Statistics:
Mean and standard deviations were calculated for all quantitative data. Except for clinical pathology data were the contract laboratory, Huntingdon Life Sciences, elected to use statistics to aid in the data interpretation; no further statistical treatment of the study was conducted due to small group sizes.
Clinical signs:
no effects observed
Mortality:
no mortality observed
Body weight and weight changes:
no effects observed
Food consumption and compound intake (if feeding study):
no effects observed
Food efficiency:
no effects observed
Water consumption and compound intake (if drinking water study):
not examined
Ophthalmological findings:
no effects observed
Haematological findings:
no effects observed
Clinical biochemistry findings:
no effects observed
Urinalysis findings:
not examined
Behaviour (functional findings):
no effects observed
Organ weight findings including organ / body weight ratios:
no effects observed
Gross pathological findings:
no effects observed
Histopathological findings: non-neoplastic:
no effects observed
Histopathological findings: neoplastic:
no effects observed
Details on results:
CLINICAL SIGNS AND MORTALITY: were no treatment-related deaths and no signs of overt clinical toxicity.

BODY WEIGHT AND WEIGHT GAIN: There were no effects on body weight, food consumption, or food efficiency.

WATER CONSUMPTION AND COMPOUND INTAKE: There were no effects of test-substance treatment on food consumption in males. There were no effects of food consumption on females during pre-mating; during weeks 3, 4 and 5 for females in the General Toxicity Group; or during gestation and lactation. Food consumption was not measured during the mating period. Food efficiency was also unaffected by treatment.

HAEMATOLOGY:
No test substance related haematological changes were associated with the test substance treatment.

CLINICAL CHEMISTRY A slight increase in blood urea nitrogen was observed in male and female rats at 1,500 mg/kg/day and in female rats at 750 mg/kg/day. Although outside the range of the historical control, the absence of other indicators of renal dysfunction (e.g., creatinine) discounted the clinical significance of this endpoint. Minimal changes in electrolyte levels in male rats (e.g., 10% decrease in potassium, 4% decrease in calcium, and 22% increase in phosphorus) and female rats (3% decrease in chloride, 4% decrease in magnesium) were observed at 1,500 mg/kg/day. These changes were within the range of historical control and were not considered to be of biological significance.

NEUROBEHAVIOUR: Functional observational battery (FOB) and motor activity tests identified no treatment-related changes in behavior, function, or motor activity.

ORGAN WEIGHTS: Mean organ weights and organ-to-body weight ratios for both the Reproduction and General Toxicity test groups, in general, were considered comparable to their respective control groups. Any slight increases or decreases from the control were incidental, not dose-related and judged not to be of toxicological importance.

GROSS PATHOLOGY: There were a number of gross observations correlated to microscopic findings. The dilatation of the uterus (horns) observed in several female rats from the General Toxicology Group was considered to be a function of the estrus stage (generally proestrus, but sometimes early estrus). These gross observations and others, along with their microscopic correlates, were all considered incidental background findings not attributable to administration of the test substance.

HISTOPATHOLOGY: No treatment-related histopathological changes were reported.
Key result
Dose descriptor:
NOAEL
Effect level:
>= 1 500 mg/kg bw/day (actual dose received)
Based on:
test mat.
Sex:
male/female
Basis for effect level:
other: General toxicity: no adverse effects (highest dose tested)
Critical effects observed:
not specified

Toxicity subgroup: There were no treatment-related deaths and no signs of overt clinical toxicity. There were no effects on body weight, food consumption, or food efficiency. Functional observational battery (FOB) and motor activity tests identified no treatment-related changes in behavior, function, or motor activity. A slight increase in blood urea nitrogen was observed in male and female rats at 1,500 mg/kg/day and in female rats at 750 mg/kg/day. Although outside the range of the historical control, the absence of other indicators of renal dysfunction (e.g., creatinine) discounted the clinical significance of this endpoint. Minimal changes in electrolyte levels in male rats (e.g., 10% decrease in potassium, 4% decrease in calcium, and 22% increase in phosphorus) and female rats (3% decrease in chloride, 4% decrease in magnesium) were observed at 1,500 mg/kg/day. These changes were within the range of historical control and were not considered to be of biological significance. No treatment-related histopathological changes were reported.  

Conclusions:
Based on the results of a combined repeated dose toxicity study with a reproduction/ developmental toxicity screening performed according to OECD 422 guideline and GLP principles, the NOAEL of potassium nitrate was found to be >=1,500 mg/kg/day for general toxicity.
Executive summary:

A combined repeated dose toxicity study with a reproduction/ developmental toxicity screening performed according to OECD 422 guideline and GLP principles was performed with potassium nitrate. Male and female rats were exposed to 0, 250, 750 or 1500 mg/kg bw/ day. There were no treatment-related deaths and no signs of overt clinical toxicity. There were no effects on body weight, food consumption, or food efficiency. Based on these data, the NOAEL of potassium nitrate was found to be >=1,500 mg/kg/day for general toxicity.

Endpoint conclusion
Endpoint conclusion:
no adverse effect observed
Dose descriptor:
NOAEL
1 500 mg/kg bw/day
Study duration:
subacute
Species:
rat
Quality of whole database:
The study has been performed according to OECD and/or EC guidelines and according to GLP principles. However, since the study was performed with a substance analogue and the data are read across, the Klimisch score is 2.

Repeated dose toxicity: inhalation - systemic effects

Endpoint conclusion
Endpoint conclusion:
no study available

Repeated dose toxicity: inhalation - local effects

Endpoint conclusion
Endpoint conclusion:
no study available

Repeated dose toxicity: dermal - systemic effects

Endpoint conclusion
Endpoint conclusion:
no study available

Repeated dose toxicity: dermal - local effects

Endpoint conclusion
Endpoint conclusion:
no study available

Additional information

Several oral repeated dose studies with sodium nitrate are available. However, all of them are limited in parameters that were investigated. An MTD was determined in a rat study to be 2.2 g/kg bw/day.

A reliable 28-day oral OECD 422 study has been performed in rats (5 rats/sex/dose) via gavage, containing 50, 750 or 1500 mg/kg bw/day potassium nitrate. There were no treatment-related deaths and no signs of overt clinical toxicity. There were no effects on body weight, food consumption, or food efficiency. Functional observational battery (FOB) and motor activity tests identified no treatment-related changes in behavior, function, or motor activity. No treatment-related histopathological changes were reported. Therefore, it was concluded that the NOAEL is 1500 mg/kg bw/day (or higher, highest dose tested).

Several other less reliable studies are available, showing no clear toxicity profile for potassium nitrate. As these studies show many shortcomings, both in description of methods as well as results, using other species, only the OECD guideline study has been taken into account.

No dermal and inhalation toxicity studies are available. Inhalation exposure seems to be an unlikely route of exposure as the vapour pressure is assumed to be very low and the particle size of the substance is quite high (10% < 99 µm, which is the inhalable fraction).

Based on an expert statement, no sub-chronic study need to be conducted. In a reliable study performed with potassium nitrate according to OECD 422 in rats, no effects were observed a t 1500 mg/kg bw/d. As can be expected based on the assessment factors (see guidance IR CSA R.8), for exposure duration from subacute to semi-chronic a factor 3 is used, expecting a 3 times lower NOAEL. This would stil not result in a NOAEL showing a hazardous property. In addition, no overt toxicity of sodium nitrate was observed in short-term, subchronic and chronic studies as evaluated by EFSA. Other supporting data, sub-chronic, chronic, carcinogenicity, included do not suggest any hazardous properties of sodium nitrate. Furthermore, sodium, one of the two ions contained in sodium nitrate, is an essential element for humans and the acceptable daily intake for sodium is 2.4 g/day (Dutch Voedingscentrum).

Justification for selection of repeated dose toxicity via oral route - systemic effects endpoint:

One 28-day key study on the read-across study Potassium nitrate and supporting studies on the substance are avialable.

Justification for classification or non-classification

According to Annex I of Regulation (EC) No. 1272/2008 sodium nitrate is not classified

- for repeated dose oral toxicity based on the absence of adverse effects at or below 1500 mg of the read across substance potassium nitrate per kg bw;

- for repeated dose toxicitiy (inalation) based on the unlikelihood of exposure due to the vapour pressure and the particle size of the substance;

- for repeated dose toxicity (dermal) based on the absence of data as this is not the most likely route of exposure.

The expert statement justifies the absence of data for sub-chronic toxicity and thereby the classification of the substance for this endpoint (not classified).