Registration Dossier

Data platform availability banner - registered substances factsheets

Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.

The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.

Diss Factsheets

Toxicological information

Developmental toxicity / teratogenicity

Currently viewing:

Administrative data

Endpoint:
developmental toxicity
Type of information:
experimental study
Adequacy of study:
key study
Study period:
28 January 2014 to 30 June 2014
Reliability:
1 (reliable without restriction)
Rationale for reliability incl. deficiencies:
other: Study conducted to GLP in compliance with agreed protocols, with no or minor deviations from standard test guidelines and/or minor methodological deficiencies, which do not affect the quality of the relevant results.

Data source

Reference
Reference Type:
study report
Title:
Unnamed
Year:
2016
Report date:
2015

Materials and methods

Test guidelineopen allclose all
Qualifier:
according to guideline
Guideline:
OECD Guideline 414 (Prenatal Developmental Toxicity Study)
Deviations:
no
Qualifier:
according to guideline
Guideline:
EU Method B.31 (Prenatal Developmental Toxicity Study)
Deviations:
no
Qualifier:
according to guideline
Guideline:
EPA OPPTS 870.3700 (Prenatal Developmental Toxicity Study)
Deviations:
no
Qualifier:
according to guideline
Guideline:
other: Japanese Guidelines (MAFF, Test Data for Registration of Agricultural Chemicals, 12 Nohsan No. 8147, Teratology (2-1-18), Agricultural Production Bureau, dated November 24, 2000)
Deviations:
no
GLP compliance:
yes
Limit test:
no

Test material

Constituent 1
Chemical structure
Reference substance name:
Manganese dichloride
EC Number:
231-869-6
EC Name:
Manganese dichloride
Cas Number:
7773-01-5
Molecular formula:
Cl2Mn
IUPAC Name:
manganese(2+) dichloride
Test material form:
solid: particulate/powder
Details on test material:
- Appearance: Pink powder and chunks
- Storage conditions of test material: Store at room temperature (15 - 25 °C) under nitrogen; keep container tightly closed. Moisture sensitive.

Test animals

Species:
rat
Strain:
Wistar
Details on test animals or test system and environmental conditions:
TEST ANIMALS
- Strain: RccHan™: WIST(SPF)
- Age at study initiation: 11 - 12 weeks
- Weight at study initiation: 203 to 262 g (Day 0 post coitum)
- Housing: Group A females (mated) were housed in groups of three to five animals in cages with wire mesh tops up to the day of mating and afterwards individually in cages with wire mesh tops. Group B females (not mated) were housed individually in cages with wire mesh tops. Cages were equipped with sterilised standard softwood bedding with paper enrichment.
- Diet: Pelleted standard rodent maintenance diet (ad libitum)
- Water: Community tap water in water bottles (ad libitum)
- Acclimation period: Animals were acclimated under test conditions after a health examination. Dams were accustomed to the restraining tubes for 3 daily periods of approximately 1, 2, and 4 hours, respectively.

ENVIRONMENTAL CONDITIONS
- Temperature: 22 ± 3 °C
- Humidity: 30 - 70 % (relative)
- Air changes: 10 - 15 air changes per hour
- Photoperiod: There was a 12-hour fluorescent light / 12-hour darkness cycle with music during the light period.

IN-LIFE DATES:
From: 28 Jan 2014
To: 28 April 2014

Administration / exposure

Route of administration:
inhalation: aerosol
Type of inhalation exposure (if applicable):
nose only
Vehicle:
air
Details on exposure:
GENERATION OF TEST ATMOSPHERE / CHAMBER DESCRIPTION
- Exposure apparatus: Inhalation exposure was performed using a flow-past system. Ports for animal exposure were positioned radially around the nose-only, flow-past exposure chamber on several different levels. The aerosol was discharged constantly through the exposure system. The exposure system ensured a uniform distribution and provided a constant flow of test material to each exposure tube. Before commencement of the exposure of the group(s), technical trials were conducted (without animals) using the inhalation system foreseen for the study.
- Method of holding animals in test chamber: The animals were confined separately in restraint tubes.
- System of generating particulates/aerosols: A dust aerosol was generated from the test material using a rotating brush aerosol generator connected to a micronising jet mill. The aerosol generated was then discharged into the exposure chamber through a 63Ni charge neutraliser. Furthermore, the aerosol concentrations of the test material of the low dose group were achieved by serial dilution with compressed, filtered, dry air of the higher aerosol concentration of the mid dose group using an air vacuum device.
- Temperature, humidity, pressure in air chamber: Aerosol concentration, particle size distribution, relative humidity and temperature were measured on test aerosol samples taken at a representative exposure port. The relative humidity and temperature in the chamber were measured continuously during each exposure using a calibrated device. Additionally, values were recorded hourly during each exposure.
- Oxygen concentration: The oxygen concentration was measured on test aerosol samples taken at a representative exposure port. The oxygen concentration in the chamber was measured during each exposure using a calibrated device. Additionally, values were recorded hourly by hand during each exposure. The oxygen concentration was maintained above 19 % during the exposure period.
- Air flow rate: The flow of air at each tube was 1 L/min, which is sufficient to minimise re-breathing of the test aerosol as it is more than twice the respiratory minute volume of a rat. All airflow rates (including those for concentration and particle size measurements) were determined using calibrated gas meters and pressure gauges or flow meters. The exposure airflow rate was adjusted as appropriate before the start of the exposure using calibrated flow-meters and/or pressure gauges. The actual airflow rate was monitored hourly during each exposure. Additional measurements were performed if considered necessary.
- Method of particle size determination: The particle size distribution was determined gravimetrically three times for the low, mid and high dose groups. The cumulative particle size distribution of the test aerosol was determined using a Mercer 7 stage cascade impactor Model 02-130 (In-Tox. Products Inc., Albuquerque, New Mexico, USA). The test aerosol was impacted at each stage onto stainless steel slips and the particle size distribution of the test material in the generated aerosol was measured by gravimetrically analysing the test material deposited on each stage of the cascade impactor. The airflow rate through the impactor was 1 L/min. The mass median aerodynamic diameter (MMAD) and the geometric standard deviation (GSD) were calculated on the basis of the gravimetric results from the impactor, using Microsoft Excel® software. The target ranges were 1 to 3 μm for the MMAD and 1.5 to 3 for the GSD.
- Treatment of exhaust air: The aerosol was exhausted using a tubing/filter system.

TEST ATMOSPHERE
- Brief description of analytical method used:

>Determination of Nominal Aerosol Concentration
The test material usage was measured during each exposure in the mid and high dose groups by weighing the generator cylinders containing the test material before and after each exposure to determine the quantity of test material used. The weight used was then divided by the total air-flow volume to give the nominal concentration. The nominal concentration of the low dose group was calculated from the value of the mid dose group under consideration of the dilution factor. These data were used for the purpose of monitoring the performance of the generation system.

>Gravimetric Determination of Aerosol Concentration
Gravimetric determination of the aerosol concentration was performed twice to four times per exposure for the low, mid and high dose groups. Additional samples were collected for monitoring purposes.

VEHICLE
- Composition of vehicle: Compressed, filtered, dry air
Analytical verification of doses or concentrations:
yes
Details on analytical verification of doses or concentrations:
Test aerosol samples were collected onto Millipore® durapore filters, type HVLP using a stainless steel filter sampling device. Sampling flow was similar to the air flow rate per exposure port. The filters were weighed before and at least 10 minutes after sampling using a calibrated balance. The gravimetric aerosol concentration was calculated from the amount of test material present on the filter and the sample volume. A correction factor of 1.67 (determined from the technical trials) was applied to correct for the adsorption of water during sampling due to the hygroscopic properties of the test material. This factor was determined during technical trials by AAS analysis on the Mn content and was confirmed by additional AAS analysis of filters taken during exposure. For AAS analysis filter samples were sent to the person responsible for dose formulation analysis.

FORMULATION ANALYSIS
- Analytical Standard
Manganese 1000 μg/mL AAS/ICP

- Study Samples and Storage
Filter samples were dispatched to the analytical laboratories internally (at room temperature) and directly analysed.

- Purified water
Prepared in-house with an ELGA water purification system (Ultra Bio No. UBH 279651)

ANALYTICAL PROCEDURE
- Preparation of Calibration Solutions
A stock solution of analytical standard in 1 M chloride acid (HCl) with a concentration of 2.56 μg/mL was prepared (solution A) by dissolving 256 μL of the analytical standard in 100 mL of 1 M chloride acid. Standard solutions were prepared by successive dilution of solution A with 1 M chloride acid. The resulting concentrations ranged from 0.040 to 1.280 μg/mL. These standard solutions as well as solution A were used to calibrate the atomic absorption spectrometer.

- Work up of Samples
An appropriate volume of 1 M chloride acid was added to each filter sample and dissolution was achieved by sonication for at least 5 minutes.

-Atomic Absorption Spectrometry with Flame Assembly
Instrument: Perkin-Elmer Model PE 2100 (software 4100) atomic absorption spectrometer
Flame: Acetylene flame/air
Slit Width: 0.2
Wavelength: Calcium: 279.5 nm

- Evaluation of Results
Samples were quantified by atomic absorption spectrometry (AAS) of manganese with reference to the respective calibration curve (with zero intercept). The calibration curve (non-linear) and the concentration (in μg/mL) were calculated using the Perkin Elmer software.
The concentration of precipitated test material in the filter samples was calculated using the following equation:
Filters: A(filter) = (Cs ∙ V ∙ D ∙ F) / 1000
where
A(filter) = Actual amount of test material on filter [μg/filter]
Cs = Measured concentration of manganese in sample [μg/mL]
V = Volume solvent for dissolution [mL]
D = Dilution factor
F = Correction factor of 2.2906
Details on mating procedure:
- Impregnation procedure: Cohoused. After acclimatisation, females were housed with sexually mature males in special automatic mating cages i.e. with synchronised timing to initiate the nightly mating period, until evidence of copulation was observed. This system reduced the variation in the copulation times of the different females.
- M/F ratio per cage: 1:1
- Length of cohabitation: Not reported
- Proof of pregnancy: The females were removed and housed individually if the daily vaginal smear was sperm positive or a copulation plug was observed. The day of mating was designated day 0 post coitum.
- Other: Male rats of the same source and strain were used only for mating. These male rats are in the possession of laboratory and were not considered part of the test system. The fertility of these males had been proven and was continuously monitored. Females in recovery groups were not mated.
Duration of treatment / exposure:
6 hours per day
Frequency of treatment:
Animals were treated with the test material once daily at approximately 24 hour intervals.
Duration of test:
Females were treated for 15 consecutive days. Mated females were treated from days 6 to 20 post coitum) and recovery animals from day 1 to 15 of a concurrent treatment period.
The recovery period was 8 weeks.
No. of animals per sex per dose:
Females A: 88 mated females, 22 per group
Females B: 24 not mated females, 6 per group
Control animals:
yes, concurrent vehicle
Details on study design:
- Dose selection rationale: The dose levels were selected based on a previous developmental neurotoxicity study in Han Wistar rats conducted at the testing facility using aerosol concentrations of 5, 15 and 25 µg/L air. At a dose level of 25 µg/L laboured breathing and reduced body weight were observed in dams after treatment during gestation. No test material-related effects were recorded in breeding at any aerosol concentration for the test material.

Examinations

Maternal examinations:
CAGE SIDE OBSERVATIONS: Yes
- Time schedule: Animals were observed for viability/mortality twice daily. Daily cage-side clinical observations were made once daily during acclimatisation and after treatment up to the day of necropsy.

DETAILED CLINICAL OBSERVATIONS: No

BODY WEIGHT: Yes
- Time schedule for examinations: For Group A, body weights were recorded daily from day 0 until day 21 post coitum. For Group B, body weights were recorded on treatment days 1, 8 and 15 and recovery days 1, 8, 15, 22, 29, 36, 43, 50 and 57.

FOOD CONSUMPTION AND COMPOUND INTAKE: Yes
- Time schedule for examinations: For Group A, food consumption was recorded at 3-day intervals on days 0 - 3, 3 - 6, 6 - 9, 9 - 12, 12 - 15, 15 - 18 and 18 - 21 post coitum.
For Group B, food consumption was recorded on treatment days 1 - 8 and 8 – 15 and recovery days 1 - 8, 8 - 15, 15 - 22, 22 - 29, 29 - 36, 36 - 43, 43 – 50 and 50 – 57.

WATER CONSUMPTION AND COMPOUND INTAKE: No

POST-MORTEM EXAMINATIONS: Yes
- Sacrifice
At the scheduled necropsy on day 21 post coitum, main study females were sacrificed by CO₂ asphyxiation and the foetuses were removed by Caesarean section. Recovery females were sacrificed by intraperitoneal injection of pentobarbitone after 4 (3 females per group) or 8 weeks (3 females per group) of recovery period.

-Necropsy
Group A: Any female sacrificed during the study was subjected to macroscopic examination with emphasis on the uterus and its contents. Post mortem examination, including gross macroscopic examination of all internal organs was performed. The uteri (and contents) of all females with live foetuses were weighed during necropsy on day 21 post coitum to enable the calculation of the corrected body weight gain.
When considered appropriate, macroscopic changes in the dams were photographed and samples of tissue fixed in neutral phosphate buffered 4 % formaldehyde solution for possible microscopic examination.
One foetus from 6 different litters of each dose group was removed, weighed and stored at -20 ± 5 °C for possible determination of test material levels. In agreement with the Sponsor, these foetuses were discarded after delivery of the draft report.

- Tissue Preservation
At scheduled sacrifice, the lungs from certain females were preserved; the lungs from 6 pregnant females per dose group, all non-pregnant females per dose group and all 6 recovery females were preserved in neutral phosphate buffered 4 % formaldehyde solution.

-Histotechnique
The lungs from pregnant Group A females in the control and high-dose group as well as all occurring gross lesions were processed, embedded and cut at an approximate thickness of 4 micrometres and stained with haematoxylin and eosin.
Treatment-related changes were observed in the lungs of pregnant females at the high-dose, therefore the lungs of pregnant females in groups 2 and 3 and all recovery females were processed.

- Histopathology
Slides of all organs and tissues collected at terminal sacrifice of the control and high-dose group were examined.
Test material-related morphologic changes were detected in organs of high-dose animals and therefore the lungs from the remaining groups were examined to establish a no-effect level, if possible.
Ovaries and uterine content:
The ovaries and uterine content was examined after termination: Yes
Examinations included:
- Gravid uterus weight: Yes
- Number of corpora lutea: Yes
- Number of implantations: Yes
- Number of early resorptions: Yes
- Number of late resorptions: Yes

Group A: Any female sacrificed during the study was subjected to macroscopic examination with emphasis on the uterus and its contents. Post mortem examination, including gross macroscopic examination of all internal organs with emphasis on the uterus, uterine contents, corpora lutea count and position of foetuses in the uterus was performed.
If no implantation sites were evident, the uterus was placed in an aqueous solution of ammonium sulfide to accentuate possible haemorrhagic areas of implantation sites.
Fetal examinations:
- External examinations: Yes: all per litter
- Soft tissue examinations: Yes: half per litter
- Skeletal examinations: Yes: half per litter
- Head examinations: Yes: half per litter

Foetuses were removed from the uterus, sexed, weighed individually, examined for gross external abnormalities, sacrificed by a subcutaneous injection of sodium pentobarbital and allocated to one of the following procedures:
- Microdissection technique (sectioning/dissection technique). At least one half of the foetuses from each litter was fixed in Bouin's fixative (one foetus per container). They were examined by a combination of serial sections of the head and microdissection of the thorax and abdomen. This included detailed examination of the major blood vessels and sectioning of the heart and kidneys. After examination, the tissue was preserved in a solution of glycerin/ethanol (one foetus per container). Descriptions of any abnormalities and variations were recorded.
- The remaining foetuses were eviscerated and with the exception of over the paws, the skin was removed and discarded. Carcasses were processed through solutions of ethanol, glacial acetic acid with Alcian blue (for cartilage staining), potassium hydroxide with Alizarin red S (for clearing and staining ossified bone) and aqueous glycerin for preservation and storage. The skeletons were examined and all abnormal findings and variations were recorded. The specimens were preserved individually in plastic vials. The assessment included, but was not limited to all principal skeletal structures including cranium, vertebral column, rib cage and sternum, pectoral and pelvic girdles. After the staining of the foetuses for skeletal examination, specimens were evaluated. Foetuses were examined in mixed group order. Each litter was examined in sequential order. Foetuses with abnormalities were photographed when considered appropriate.

- Histotechnique and Histopathology
An increased number of large thyroids was found in group 4 during visceral examination of foetuses and therefore this organ was examined histopathologically to establish whether the increase in size is related to any microscopic change.
To this purpose, normal thyroids from ten foetuses in the control group and thyroids with increased size from ten foetuses in the high-dose group were selected as follows:
- in the control group one foetus per litter were randomly selected to represent ten litters;
- in the high-dose group, all five foetuses (from four litters) with large thyroid were selected and additionally five foetuses with slightly large thyroid were selected from five different litters.
Foetal thyroids were trimmed transversely leaving them attached to the trachea. They were embedded on this cut surface and serial section were cut at 4 μm. They were then stained with haematoxylin and eosin.
Statistics:
The following statistical methods were used to analyse food consumption, body weights, reproduction and skeletal examination data:
- Means and standard deviations of various data were calculated and included in the report.
- The Dunnett-test (many to one t-test) based on a pooled variance estimate was applied if the variables could be assumed to follow a normal distribution for the comparison of the treated groups and the control groups for each sex.
- The Steel-test (many-one rank test) was applied instead of the Dunnett-test when the data could not be assumed to follow a normal distribution.
- Fisher's exact-test was applied if the variables could be dichotomised without loss of information.

The skeletal examination data were first assessed using Bartlett’s test for homogeneity of variance. As these data were found to be non-homogenous, non-parametric assessment by Kruskall-Wallis and, if significant, pairwise analysis of control values against treated values using the Mann-Whitney ‘U’ test was used.
Historical control data:
Historical control data were included in the report.

Results and discussion

Results: maternal animals

Maternal developmental toxicity

Details on maternal toxic effects:
Maternal toxic effects:yes

Details on maternal toxic effects:
MORTALITY AND CLINICAL SIGNS
GROUP A
All females survived the scheduled study period.
Treatment with the test material caused breathing noises and dyspnea in females in groups 3 and 4. In group 4, breathing noises were observed on day 8 post coitum in one female. The number of females affected increased and until day 17 post coitum it was recorded in 18 females in this group.
In group 3, one female had dyspnea on day 8 post coitum followed by breathing noises observed in this female for several days. Breathing noises were also recorded for 7 more females in this group; in 4 animals for one day and in 3 animals for four days.
A red secretion from the nose and eyes was noted in several females in all groups including control. This finding was considered to be related to the treatment route.

GROUP B
All females survived until the scheduled necropsy.
Treatment with the test material caused breathing noises in females in groups 3 and 4.
In group 4, breathing noises were observed on day 3 of the treatment in one female. The number of females affected increased and on day 12 of the treatment it was recorded in all 6 females. The breathing noises were observed until the end of the treatment period and on day 1 of the recovery period. No breathing noises were observed in any female during the remaining recovery period days 2 to 57.
In group 3, breathing noises were observed for the first time on day 5 of treatment. Four females were affected in this group, with breathing noises also observed on day 1 of the recovery period, but not thereafter.
A red secretion from the nose and eyes was noted in several females in all groups including the control. This finding was observed during the treatment and on day 1 of the recovery period but not thereafter. It was considered to be related to the treatment route.

BODY WEIGHTS
GROUP A
Mean body weight gain from day 6 to 21 post coitum was 38.2, 37.2, 32.4 and 29.4 % whereas mean corrected body weight gain was 1.4, 1.9, -2.4 and -5.4 % in groups 1, 2, 3 and 4, respectively.
Treatment with the test material caused a dose dependent body weight loss followed by a reduced body weight gain and a reduction in body weights in groups 3 and 4. A body weight loss of 2 and 5 % was noted in groups 3 and 4, respectively, on day 8 post coitum followed by a reduced body weight gain during the remaining study period. The reduction in body weights as well as the reduction in body weight gain was statistically significant from day 7 to 21 post coitum in both groups. Also corrected body weight gain (body weight gain corrected for the gravid uterus weight at termination) was dose dependently reduced in both groups. After subtraction of the gravid uterus weights, a body weight loss was established with a statistical significance in both groups if expressed as absolute values and in group 4 if expressed as a percentage of the body weight at the start of the treatment.
In group 2, body weight was lower if compared to the control values with a statistical significance during most of the study period, as well as before the start of treatment. Body weight gain in this group was however similar to the control values and corrected body weight gain was slightly higher than the control value. For these reasons lower body weights in group 2 were considered not to be related to the treatment with the test material but due to biological variability.

GROUP B
Treatment with the test material caused a reversible reduction in body weights and body weight gain in group 4. Body weight loss of 8.1 % was noted on day 8 and a reduced body weight gain on day 15 of the treatment period. The reduction in body weight gain was statistically significant during the entire treatment period. After the completion of the treatment, body weight gain recovered and was higher than in the control group with a statistical significance during the entire recovery period. As a consequence, body weights were reduced during the treatment period with a statistical significance on day 8 of this period. Although the body weight gain recovered and increased during the treatment, body weights had not recovered to the pre-dose values by the end of the treatment (day 15). Body weights recovered after the completion of the treatment and were higher than the control values during the recovery period with a statistical significance on day 29.
In groups 2 and 3, no statistically significant differences in body weight gain or body weights were noted if compared to the control group during the treatment. During recovery, a slight but statistically significant increase in body weight gain but with no significant changes in body weights was observed on individual days in both groups. These differences were considered to be incidental.
Mean body weight gain in groups 1, 2, 3 and 4 was, respectively: 3.0, -0.6, 0.2 and -2.6 % during the treatment and 17.9, 24.0, 24.3 and 29.4 % during the recovery period.

FOOD CONSUMPTION
GROUP A
Mean food consumption from day 6 to 21 post coitum was 20.4, 18.9, 17.8 and 16.1 g/animal/ day in groups 1, 2, 3 and 4, respectively.
Treatment with the test material caused a dose dependent reduction in food consumption in groups 3 and 4. The reduction was statistically significant from day 6 to 18 post coitum in both groups. Afterwards it remained lower when compared to the control value; however the differences were not statistically significant.
In group 2, lower food consumption was recorded during the entire study with a statistical significance on days 0 - 3, 6 - 12 and 15 - 18. As the differences in food consumption were already recorded before the start of treatment and remained similar during the study, they were considered not to be related to the treatment with the test material but due to biological variability.

REPRODUCTION DATA
GROUP A
Four females in the control group, three females in group 2 and two females in group 4 were not pregnant. One female in group 2 had implantations only. All remaining females were pregnant and had foetuses at termination on day 21 post coitum.
The relevant reproduction data (post-implantation loss and number of foetuses per dam) were not affected by treatment with the test material. Mean incidence of post-implantation loss per dam was 0.5, 0.9, 0.6 and 0.7, whereas mean number of foetuses per dam at termination was 13.4, 12.1 12.3 and 13.3 in order of ascending dose levels.

GROUP B
Treatment with the test material caused a reversible reduction in food consumption in group 4. The reduction was statistically significant from day 1 to 8 of the treatment period. Afterwards food consumption recovered and was similar to the control value from day 8 to 15 of the treatment. During the recovery period, food consumption was higher than the control values during the first four weeks with a statistical significance from day 8 to 29 of this period and similar to the control values during the remaining four weeks of this period.
In groups 2 and 3, food consumption was not affected by the treatment with the test material. Mean food consumption was 15.4, 14.6, 14.6 and 13.4 g/animal/day during the treatment and 16.7, 17.6, 17.5 and 19.0 g/animal/day during the recovery period in groups 1, 2, 3 and 4, respectively.


MACROSCOPIC PATHOLOGY
GROUP A
In group 4, foci on the lungs were found in two females (nos. 67 and 68). This finding was considered to be test material-related. No further findings were noted during the necropsy in any group.

GROUP B
No findings were observed during macroscopic examination at any dose level.

HISTOPATHOLOGY
GROUP A
Histopathology examination was performed on the lungs from six selected pregnant females per group and from 2 females with macroscopically identified findings in the lungs. Treatment with the test material caused lesions with a dose dependent frequency and severity in groups 3 and 4. Phagocytic alveolar macrophage foci were noted in all six females from group 3 at minimal or slight severity and in all six females from group 4 at slight or moderate severity. Further, granulolymphocytic alveolar inflammation was recorded at minimal degree in four females from group 3 and at minimal to moderate degree in all six females from group 4. The granulolymphocytic alveolar inflammation at minimal degree was recorded also for one female in the control group.
The macroscopically identified foci in two females in group 4 were correlated to alveolar haemorrhage or phagocytic alveolar macrophage foci.
No test material related lesions were found in the lungs of females in group 2.

GROUP B
No test material-related findings were noted during the histopathological examination of female lungs after four or eight weeks of the recovery period. All findings were considered to be within the spontaneous background occurrence of the finding in untreated rats.

Effect levels (maternal animals)

open allclose all
Dose descriptor:
NOEL
Effect level:
5 mg/m³ air
Based on:
test mat.
Basis for effect level:
other: maternal toxicity
Dose descriptor:
NOAEL
Effect level:
5 mg/m³ air (nominal)
Based on:
test mat.
Basis for effect level:
other: maternal toxicity
Dose descriptor:
NOEL
Effect level:
15 mg/m³ air (nominal)
Based on:
test mat.
Basis for effect level:
other: maternal toxicity
Dose descriptor:
NOAEL
Effect level:
25 mg/m³ air (nominal)
Based on:
test mat.
Basis for effect level:
other: maternal toxicity

Results (fetuses)

Details on embryotoxic / teratogenic effects:
Embryotoxic / teratogenic effects:yes

Details on embryotoxic / teratogenic effects:
EXTERNAL ABNORMALITIES AND VARIATIONS
No test material-related findings were observed during external examination of the foetuses in any group.
The only finding recorded during external examination of foetuses at termination was haematoma found in five foetuses from litter no. 47 and one foetus from litter no. 48 in group 3. Due to the isolated occurrence and lack of dose dependency, this finding was considered to be incidental.

SEX RATIOS
No effects on the sex ratio of the foetuses were noted in any group.
The proportion of male foetuses was 49.2, 54.6, 47.4 and 49.4 % in order of ascending dose levels.

BODY WEIGHTS
Mean foetal body weights calculated on a litter basis were: 4.8, 4.9, 5.0 and 4.5 g whereas calculated on an individual basis, they were 4.7, 4.8, 4.8 and 4.4 g, both cited in order of ascending dose levels
Treatment with the test material caused a reduction in foetal body weights in group 4. This reduction was statistically significant if calculated on an individual basis and not statistically significant if calculated on a litter basis.
Foetal body weight in groups 2 and 3 were not affected by the treatment with the test material.

VISCERAL ABNORMALITIES AND VARIATIONS
During visceral examination of the foetuses, findings were noted in: 54 % OF examined foetuses (in 100 % of litters) in group 1; 60 % of examined foetuses (in 100 % of litters) in group 2; 49 % of examined foetuses (in 91 % of litters) in group 3; and 58 % of examined foetuses (in 95 % of litters) in group 4.
Treatment with the test material caused an increase in the incidence of large or slightly large foetal thyroid in group 4. This finding was recorded in 12 % of foetuses (in 65 % of litters); 4 % of foetuses (from 20 % of litters) had large thyroid and 8 % of foetuses (from 50 % of litters) had slightly large thyroid. In the control group slightly large thyroid was found in 2 % (in 11 % litters).
The incidence of the large thyroid in group 4 was approximately twice as high as in the historical control group with the highest incidence where 5 % of foetuses (in 29 % of litters) were found with this finding; 2 % of the foetuses (from 10 % of litters) had large thyroid and 3 % of the foetuses (from 24 % of litters) had slightly large thyroid.
The frequency of the remaining findings was within the normal biological background.

MICROSCOPIC EXAMINATION OF THYROIDS
During histopathological examination of the foetal thyroids diffuse follicular hypertrophy and/or hyperplasia at minimal to moderate degree was noted in all five male foetuses from group 4 and at slight or moderate degree in four females from group 4. A minimal degree of this finding was recorded in one group 1 female foetus. Mitotic figures in follicular epithelial cells were increased in both male and female group 4 foetuses.

SKELETAL EXAMINATION
The evaluation of foetuses for skeletal development showed treatment-related changes in group 4 including incomplete or lack of ossification of cervical arch, metatarsals, caudal vertebrae and hind paw phalanges. In addition, the percentage of foetuses with one or more wavy ribs was higher in this group if compared to the control group.
In groups 2 and 3, no findings were recorded which were considered to be test material related.

Effect levels (fetuses)

open allclose all
Dose descriptor:
NOEL
Effect level:
15 mg/m³ air
Based on:
test mat.
Sex:
not specified
Basis for effect level:
visceral malformations
Dose descriptor:
NOAEL
Effect level:
15 mg/m³ air
Based on:
test mat.
Sex:
not specified
Basis for effect level:
visceral malformations

Fetal abnormalities

Abnormalities:
not specified

Overall developmental toxicity

Developmental effects observed:
not specified

Any other information on results incl. tables

Table 1: Summary of Performance of Mated Females

Group

1

2

3

4

Dose (μg/L air)

0

5

15

25

Number of mated females

22

22

22

22

Not pregnant

4

3

0

2

Resorptions only

0

1

0

0

No. females with live foetuses at termination*

18

18

22

20

*Only dams with at least one live foetus at Caesarean section were used for the calculations of food consumption, body weight gain and corrected body weight gain data.

 

Inhalation Technical Data

The achieved group aerosol concentrations were 4.7, 15.1 and 26.0 µg/L.

- Nominal Aerosol Concentration

Group nominal aerosol concentrations are given below (mean ± SD, n = number of exposures, CV = coefficient of variation):

Group 2: 11.2 ± 1.6 µg/L (n = 45, CV = 14.4 %)

Group 3: 34.6 ± 5.1 µg/L (n = 45, CV = 14.7 %)

Group 4: 58.4 ± 11.4 µg/L (n = 45, CV = 19.6 %)

 

-Gravimetric Aerosol Concentrations

The gravimetric aerosol concentrations were stable in groups 3 and 4 during the whole treatment period, based on the small coefficients of variance. There were variations for the aerosol concentrations for group 2 during the treatment period. These fluctuations were considered to be mainly related to differences in the adsorption of water due to the hygroscopic properties of the test material as well as to the loss of moisture from the filter due to the use of dried air for aerosol generation on different days and, therefore, not reflecting real differences in the actual aerosol concentrations. The extent of the water adsorption can be seen from the difference to the corrected gravimetric values. The results are presented in the following table (mean ± SD, n = number of exposures, CV = coefficient of variation):

 

Table 2: Gravimetric Aerosol Concentrations

Group

Group Gravimetric Aerosol Concentration [μg/L]

Corrected Gravimetric Aerosol Concentration [μg/L]

1

7.8 ± 1.8 (n = 24, CV = 23.5 %)

4.7 ± 1.1

2

25.2 ± 3.0 (n = 24, CV = 12.0 %)

15.1 ± 1.8

3

43.4 ± 2.9 (n = 24, CV = 6.7 %)

26.0 ± 1.7

 

- Particle Size Determination

The values for gravimetrically determined Mass Median Aerodynamic Diameter (MMAD) and Geometric Standard Deviation (GSD) were as stated in the following table. The MMADs were at the lower limit of the target range of 1 to 3 μm, therefore deposition of the particles can be assumed to have occurred mainly in the lower but also in the upper respiratory tract. In addition, the Geometric Standard Deviations (GSD) were within the target range of 1.5 to 3. In conclusion, the particle size distribution obtained was considered to be appropriate for this type of study.

Table 3: Gravimetric determination of particle size distribution

Group

Mean MMAD [μm] (mean GSD)

Range of MMAD [μm]

Range of GSD

Number of Determinations

Mass Percentage of Particles <3.0 μm

2

1.63 (2.40)

1.53 - 1.73

2.24 - 2.59

3

75.7

3

2.04 (2.36)

1.86 - 2.14

2.20 - 2.52

3

67.3

4

1.58 (2.26)

1.46 - 1.67

2.23 - 2.26

3

78.4

Applicant's summary and conclusion

Conclusions:
Under the conditions of this study, the NOAEL (No Observed Adverse Effect Level) as well as the NOEL (No Observed Effect Level) for the toxicity in pregnant females were considered to be 5 µg/L air. In non-pregnant females, the NOEL for systemic toxicity was established at 15 µg/L air, whereas the NOAEL was established at 25 µg/L air.
Although foetal thyroids were increased in size at 25 µg/L air, a dose which caused adverse maternal toxicity, the causal correlation for these observations was unclear. Also foetal findings at 25 µg/L for the postnatal live young could not be conclusively established as non-treatment related. Therefore the NOEL as well as NOAEL for prenatal developmental toxicity was considered to be 15 µg/L air.
Executive summary:

The potential of the test material to cause prenatal developmental toxicity via the inhalation route was investigated in accordance with the standardised guidelines OECD 414, EU Method B.31, US EPA OPPTS 870.3700, and Japanese Guideline 12 Nohsan No. 8147 (2-1-18) under GLP conditions.

The purpose of this study was to detect effects on the pregnant Han Wistar rat, development of the embryo and foetus consequent to exposure of the pregnant female via inhalation route (by nose-only, flow-past exposure). A recovery group of non-mated females in all dose groups and the control group were observed for reversibility, persistence or delayed occurrence of systemic toxic effects in the lung.

Four groups of 22 mated females (main study animals) and 6 non mated females (recovery animals) were treated with the test material once daily, for 6 hours per day. Mated females were treated from day 6 post coitum (implantation) to day 20 post coitum (the day prior to Caesarean section) and recovery animals from day 1 to 15 of a concurrent treatment period at target dose levels of 0, 5, 15 and 25 µg/L air (Groups 1, 2, 3 and 4, respectively).

All mated females were sacrificed on day 21 post coitum and the foetuses were removed by Caesarean section. For the recovery animals, three females per group were sacrificed after four weeks and three females per group were sacrificed after eight weeks of the recovery period.

The achieved group aerosol concentrations were 4.7, 15.1 and 26.0 µg/L. The mean mass median aerodynamic diameter (MMAD) was between 1.46 and 2.14 μm for all groups. Therefore, the aerosol was considered to be respirable to rats.

- Main study animals

All females survived until the scheduled necropsy. Treatment with the test material caused breathing noises in eight females in group 3 and eighteen females in group 4. Dyspnea was observed in one female in group 3. No further test material- related findings were noted in any group.

Treatment with the test material caused a dose dependent reduction in body weights, body weight loss followed by a reduced body weight gain and a reduction in corrected body weight gain in groups 3 and 4. These effects were considered to be adverse. No test material-related effects on bodyweights or body weight gain were noted in group 2.

Treatment caused a dose dependent reduction in food consumption in groups 3 and 4. This reduction was statistically significant during the most of the study and was accompanied by reduced body weights, reduced body weight gain during the study and reduced corrected body weight gain at termination at both dose levels and therefore the effect was considered to be adverse. No test material-related effects on food consumption were noted in group 2.

The relevant reproduction data (post-implantation loss and number of foetuses per dam) were not affected by the treatment with the test material.

Treatment with the test material caused foci on the lungs in two females in group 4. Histopathology examination performed on the lungs from six selected pregnant females per group revealed lesions in this organ with a dose dependent frequency and severity in groups 3 and 4: phagocytic alveolar macrophage foci and granulolymphocytic alveolar inflammation. The macroscopically identified foci in two females in group 4 were correlated to alveolar haemorrhage or phagocytic alveolar macrophage foci. No macroscopic or microscopic findings were recorded in group 2.

- Foetal Data

No test material-related findings were noted during the external examination of foetuses and no effects on the sex ratio of the foetuses were noted in any group.

Treatment with the test material caused a reduction in foetal body weights in group 4. This effect was considered not to be adverse. No effects on foetal body weights were noted in groups 2 and 3.

Treatment caused an increase in the incidence of large or slightly large foetal thyroid in group 4. This effect was observed in the presence of maternal toxicity. However, the relationship between the maternal effects and the increased thyroid size remained unclear. The frequency of the remaining findings was within the normal biological background.

Histopathological examination of foetal thyroids revealed that the increased size of the organ in group 4 was correlated with a diffuse follicular hypertrophy/hyperplasia and an increase in mitotic figures in follicular epithelial cells.

Treatment with the test material caused an increased frequency of incomplete ossified or lack of ossification of several bones and an increase in the number of foetuses with wavy ribs. These effects were considered to unlikely have any adverse impact on the post-natal growth and development.

In groups 2 and 3, no findings were recorded which were considered to be test material-related.

- Recovery Females

All females survived until the scheduled necropsy. Treatment with the test material caused breathing noises in females in groups 3 and 4. This finding was observed until day 1 of the recovery period but not thereafter. No further test material- related findings were noted in any group.

Treatment with the test material caused a reversible reduction in body weights and body weight gain in group 4. These effects were considered not to be adverse. Body weights and body weight gain in groups 2 and 3 were considered not to be affected by treatment.

Treatment with the test material at the high-dose level caused a reduction in food consumption with recovery being observed during the treatment. This effect was considered not to be adverse. In groups 2 and 3, food consumption was not affected by the treatment with the test material.

No findings were noted during macroscopic examination of females after four or eight weeks of the recovery period. No test material-related findings were noted during the histopathological examination of female lungs after four or after eight weeks of the recovery period.

Under the conditions of this study, the NOAEL (No Observed Adverse Effect Level) as well as the NOEL (No Observed Effect Level) for the toxicity in pregnant females were considered to be 5 µg/L air. In non-pregnant females, the NOEL for systemic toxicity was established at 15 µg/L air, whereas the NOAEL was established at 25 µg/L air.

Although foetal thyroids were increased in size at 25 µg/L air, a dose which caused adverse maternal toxicity, the causal correlation for these observations was unclear. Also foetal findings at 25 µg/L for the postnatal live young could not be conclusively established as non-treatment related. Therefore the NOEL as well as NOAEL for prenatal developmental toxicity was considered to be 15 µg/L air.