Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 932-476-9 | CAS number: 91722-10-0
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Long-term toxicity to fish
Administrative data
Link to relevant study record(s)
Description of key information
Slag stones do not exhibit any hazardous effect on any stage of early fish development e.g. fertilization of eggs, egg number, egg distribution, development of larvae.
Key value for chemical safety assessment
Fresh water fish
Fresh water fish
- Effect concentration:
- 500 g/L
Marine water fish
Marine water fish
- Effect concentration:
- 50 g/L
Additional information
A field study was conducted in the Nord-Ostsee-Channel to elucidate the effects of stones of slag and natural rock on the reproduction of the herring, Clupea harengus. This channel is a significant spawning ground of herring, and every year approximately 15 millions of adult fish enter the channel for reproduction. The estimated number of eggs is approximately 230000 eggs/m2 of stone field, which equals approximately 83 billions of eggs in the channel (30 km length of embankment protected with stones, width 6 m). The eggs are deposited above the stone fields, sink to the ground and attach to the stones and the filamentous algae growing on these stones.
From the egg distribution data, it was apparent that herring does not prefer to slag the natural rocks basalt, granite, and diabase as a spawning ground.
The oxygen concentration of egg layers on hard ground (independent on the nature of the stones - slag or natural rocks) was close to saturation level (104 +/- 2 % of saturation, approximately 8 mg/L, depending on e.g. temperature and salinity).
The fertilization rate of eggs was independent from the nature of the stone fields and there was no difference between slag stone fields and the control fields of basalt, granite, and diabase (almost complete fertilization, at least 98.7 %)
The viability of the eggs was determined from the heartbeat of the developping larvae. Almost all larvae in the eggs deposited on hard ground had a normal heartbeat (at least 98.3 %). Concomitantly, no deviations from normal development were observed (Kils 1992).
From the observations of Kils, a (chronic) NOEC can be estimated. As the exchange rate of the brackish water is low in the channel, the hight of the water column (assumed to be 2.4 m in the slag fields) and the thickness of the slag layers (assumed to be 40 cm) were directly compared. Using a density of 3 for the slags, the estimated chronic NOEC (nominal) is approximately 12 kg/24 L = 500 g/L for weathered slags in brackish water.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.