Registration Dossier

Data platform availability banner - registered substances factsheets

Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.

The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.

Diss Factsheets

Environmental fate & pathways

Biodegradation in water and sediment: simulation tests

Currently viewing:

Administrative data

biodegradation in water and sediment: simulation testing, other
aquifer sediment degradation - degradation in groundwater
Type of information:
experimental study
Adequacy of study:
supporting study
2 (reliable with restrictions)
Rationale for reliability incl. deficiencies:
study well documented, meets generally accepted scientific principles, acceptable for assessment

Data source

Reference Type:
Inhibition of Biodegradation of Hydraulic Fracturing Compounds by Glutaraldehyde: Groundwater Column and Microcosm Experiments
Rogers JD, Ferrer I, Tummings SS, Bielefeldt AR, Ryan JN.
Bibliographic source:
Environ. Sci. Technol. 2017, 51, 10251−10261

Materials and methods

Test guideline
no guideline followed
Principles of method if other than guideline:
- Principle of test: to characterize the fate and transport of substances with increased groundwater
exposure potential in aquifer sediments and to examine inhibition effects of glutaraldehyde on their biodegradation.
- Short description of test conditions: Removal kinetics were examined n the absence and presence of glutaraldehyde were measured under a range of reduction−oxidation (redox) conditions using sediment-groundwater microcosms and flow through columns. Only the results without glutaraldehyde and for 2-butoxyethanol are relevant and reported here and the anaerobic and aerobic condition results are reported in separate records
- Parameters analysed / observed: Suspended adenosine triphosphate (ATP) using a luminescence assay
GLP compliance:
not specified

Test material

Constituent 1
Chemical structure
Reference substance name:
EC Number:
EC Name:
Cas Number:
Molecular formula:
Specific details on test material used for the study:
- Source and lot/batch number of test material: Sigma Aldrich
- Purity: >99%

Study design

Oxygen conditions:
Inoculum or test system:
other: synthetic ground water representative of the Arapahoe Formation (Colorado, USA) with respect to major ions and pH
Details on source and properties of surface water:
Synthetic water composition:
- Chloride 14mg/L
- Bromide 1mg/L
- bicarbonate 32mg/L
- sulphate 100mg/L
- nitrate 7mg/L
- phosphate 10mg/L
- sodium 20mg/L
- potassium 8mg/L
- magnesium 14mg/L
- calcium 34mg/L
- sodium azide 1g/L
Details on source and properties of sediment:
- Details on collection (e.g. location, sampling depth, contamination history, procedure):
- Sourcing: collected from the Arapahoe Formation (Colorado, USA) between the depths of 70 and 120 m in the Denver−Julesburg Basin.
- Storage conditions: Homogenised, saturated with water, stored at 4degC.
- Textural classification (i.e. %sand/silt/clay): 92% quartz, 4.5% k-feldspar, 2% muscovite, 0.5% siderite, 1% calcite
- Organic carbon (%): 0.10 ± 0.02 % w/w
- porosity (n) 0.35
- hydraulic conductivity 3.6m/day
- attached ATP 490 ± 65 pg/g
Details on inoculum:
None used, only natural organisms in sediment
Duration of test (contact time):
232 d
Initial test substance concentration
Initial conc.:
310 mg/L
Based on:
test mat.
Tested as part of a mixture of typical fracking components, inlcuding isopropanol, ethylene glycol, propargyl alcohol and 2-ethylhexanol. Compositions represented averages found in fracking fluids used in basisn over period 2010-2015.
Parameter followed for biodegradation estimation:
other: ATP as an indicator of microbial activity
Details on study design:
Flow-Through Column system used. Two stainless steel columns (1 m length, 0.1 m internal diameter) were constructed with 10 sample ports consisting of stainless steel needles with Teflon Luer-lock hubslocated along their length (Figure S1; additional details in SI). Columns eere wet-packed with sediment and operated under saturated up-flow conditions. The combined groundwater and test substrate mixture were injected continuously at the base of each column
at a rate of 2.4 ± 0.2 mL/h. The average linear flow velocity was 0.018 md−1, which resulted in a water residence time of 56 d. Sampling commended at 15 d then at 30 day intervals. The injection solution was applied continuously for 232 d.

To obtain anoxic conditions, the groundwater was deaerated by purging with >99% N2 for 1 h prior to the addition of the test substrate. Anoxic microcosms were
prepared under a N2 atmosphere and sealed with Teflon lined septa.
Reference substance
Reference substance:
not required

Results and discussion

Half-life of parent compound / 50% disappearance time (DT50)
natural sediment
>= 460 - <= 580 d
(pseudo-)first order (= half-life)
20 °C
Remarks on result:
Half lives calculated from rate constants published in source. These are only slightly faster than control abiotic degradation figures (half life 630-870 dayw), which suggest that there is little practical degradation under anoxic conditions.
Other kinetic parameters:
first order rate constant
Transformation products:
not measured
Evaporation of parent compound:
Volatile metabolites:
not measured
not measured

Applicant's summary and conclusion

Validity criteria
Validity criteria fulfilled:
not specified
Executive summary:

In a study to examine the degradation in ground water formations of substances found in fracking fluids, a study using a synthetic water composition and sediment rocks obtained from an aquifer in Colorado, USA and a flow through column experimental design, found that 2 -butoxyethanol was barely degraded under anoxic conditions. For all practical purposes it can be considered that it is not degraded under these conditions.