Registration Dossier
Registration Dossier
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 914-129-3 | CAS number: 12336-95-7
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data

Basic toxicokinetics
Administrative data
- Endpoint:
- basic toxicokinetics in vivo
- Type of information:
- experimental study
- Adequacy of study:
- weight of evidence
- Study period:
- Variable
- Reliability:
- 2 (reliable with restrictions)
- Rationale for reliability incl. deficiencies:
- other: A review of proprietary studies reported in summary form.
Data source
Reference
- Reference Type:
- review article or handbook
- Title:
- Toxicological Profile for Chromium
- Author:
- Agency for Toxic Substances and Disease Registry
- Year:
- 2 000
Materials and methods
- Objective of study:
- toxicokinetics
Test guideline
- Qualifier:
- no guideline followed
- Principles of method if other than guideline:
- Various protocols, dose levels and routes of administration were used in the studies reviewed.
- GLP compliance:
- not specified
- Remarks:
- published studies assumed not to be GLP-compliant
Test material
- Reference substance name:
- Chromium hydroxide sulphate
- EC Number:
- 235-595-8
- EC Name:
- Chromium hydroxide sulphate
- Cas Number:
- 12336-95-7
- Molecular formula:
- CrHO5S
- IUPAC Name:
- chromium hydroxide sulphate
- Reference substance name:
- not applicable
- IUPAC Name:
- not applicable
- Details on test material:
- Various water-soluble chromium (III) compounds were used as the test material.
Constituent 1
Constituent 2
- Radiolabelling:
- yes
- Remarks:
- in some studies
Administration / exposure
- Route of administration:
- other: Various routes of administration were used in the studies reviewed.
- Duration and frequency of treatment / exposure:
- Various experimental protocols
Doses / concentrations
- Remarks:
- Doses / Concentrations:
Various doses were used in the studies reviewed.
- Control animals:
- no
Results and discussion
Toxicokinetic / pharmacokinetic studies
- Details on absorption:
- See details below
- Details on distribution in tissues:
- See details below
- Details on excretion:
- See details below.
Any other information on results incl. tables
Absorption
Absorption of chromium(III) compounds is via passive diffusion and phagocytosis. Inhalation exposure studies of chromium (III) compounds show absorption by the bloodstream and mucociliary clearance of only 5-30% in rats. Intratracheal administration to rats suggest that absorbed chromium(III) acetate hydroxide, a water-soluble compound, may be excreted more rapidly than absorbed chromium(VI) compounds because of poorer ability to enter cells. Approximately 0.5-2.0% of dietary chromium(III) is absorbed via the GI tract of humans as inferred from urinary excretion measurements. The absorption efficiency is dependent on dietary uptake. Studies with chromium in animals indicate that chromium and its compounds are poorly absorbed from the gastrointestinal tract after oral exposure. Dermal penetration of chromium(III) compounds is dependent upon the water solubility of the compound, the solvent and the preexisting condition of the skin. Chromium(III) can penetrate human skin to some extent, especially if the skin is damaged. Dermal absorption by humans of chromium(III) sulphate in aqueous solution was negligible, with slightly larger amounts of chromium(III) nitrate in aqueous solution absorbed.
Distribution
The distribution of insoluble chromium(III) was investigated in guinea pigs after intratracheal instillation of chromium trichloride. Sixty-nine percent of the dose remained in the lungs at 20 minutes post-instillation while only 4% was found in the blood and other tissues, with the remaining 27% cleared from the lungs and swallowed. The only tissue that contained a significant amount of chromium 2 days after instillation of chromium trichloride was the spleen. After 30 and 60 days, only 30 and 12% of the chromium(III) was retained in the lungs, respectively.
Autopsy studies in the US indicate that chromium concentrations in the body are highest in kidney, liver, lung, aorta, heart, pancreas and spleen at birth and tend to decrease with age. Tissue distribution of chromium has been studied in rats and mice. A 10-week feeding study with water-soluble chromium(III) chloride in rats resulted in increased chromium levels in liver, kidney, spleen, hair, heart, and red blood cells. A study of transplacental transfer of chromium(III) in different forms indicated that placental transport varies with chemical form and that fetal chromium is derived from specific chromium complexes in the diet (e.g., GTF). Addition of water-soluble chromium (III) acetate to the drinking water of rats fed a chromium deficient diet did not increase the levels of chromium in neonates while neonates whose dams were fed a commercial diet contained twice as much chromium.
Measurement of 51chromium in the organs and body fluids of guinea pigs revealed distribution, due to dermal absorption of chromium(III) and chromium(VI) compounds, to the blood, spleen, bone marrow, lymph glands, urine and kidneys. Absorption was greater for chromium(VI) than for chromium(III).
The distribution of poorly water-soluble chromium(III) in humans was analyzed after intravenous injection of radiolabeled chromium trichloride. Greater than 50% of the blood plasma chromium(III) distributed to various body organs within hours of administration with highest levels in the liver and spleen. In rats administered water-soluble chromium(III) nitrate intraperitoneally for 30 or 60 days, the highest levels of chromium were found in the liver, followed by kidneys, testes and brain.
Excretion
Tannery workers, exposed mainly to basic chromium sulphate via inhalation, had higher urinary chromium (III) concentrations in postshift urine samples taken on Friday afternoon and in preshift urine samples taken on Monday, compared to controls. These workers also had hair concentrations of chromium that correlated with urinary levels. Given the low absorption of chromium compounds by the oral route, the major pathway of excretion after oral exposure is through the faeces. The amont of chromium(III) in faecal samples was 99.6% of the dose six days after an acute oral dose of radioactive chromium chloride (water-soluble compound) was administered to humans. A five-fold increase in oral intake of chromium(III) in men and women resulted in about a five-fold increase in excretion, indicating absorption was proportional to the dose. In rats and hamsters fed chromium compounds, faecal excretion varied from 97-99% of the administered dose and urinary excretion varied from 0.6-1.4% of the dose administered as chromium (III) compounds. Radiolabeled chromium was detected in the urine of guinea pigs after chromium(III) trichloride solutions were placed over skin depots to monitor dermal absorption. Rats given a subcutaneous injection of water-soluble chromium nitrate excreted 8% and 24.2% of the chromium(III) in the urine and feces, respectively. Male Swiss mice exposed to water-soluble chromium chloride by single ip injection or subcutaneous injection had plasma clearance half-times of 41.2 and 30.6 hours, respectively. In each case, blood levels reached control levels by 6-10 days.
Applicant's summary and conclusion
- Conclusions:
- Water-soluble chromium(III) compounds show low systemic bioavailability after exposure by all routes of administration (oral, dermal and inhalation).
- Executive summary:
Absorption after oral exposure in humans is approximately 0.5 -2.0% for chromium (III) compounds in the diet. Dermal absorption depends on the physical and chemical properties of the compound, the vehicle, and the integrity of the skin. Water-soluble chromium (III) compounds can penetrate human skin to some extent. Absorption of inhaled chromium compounds takes place in the lung via transfer across cell membranes and in the GI tract from particles cleared from the lungs.
Once in the blood, chromium compounds are distributed to all organs of the body with the greatest distribution in the lungs, liver, kidneys, blood, spleen, testes and brain.
Absorbed chromium is excreted primarily in the faeces, which is consistent with poor gastrointestinal absorption.Chromium has also been found in the urine, hair, fingernails and breast milk of nursing mothers after exposure.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.
