Registration Dossier
Registration Dossier
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 239-289-5 | CAS number: 15245-12-2
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data

Endpoint summary
Administrative data
Link to relevant study record(s)
Description of key information
A toxicokinetic assessment was performed based on the available data of the substance.
Key value for chemical safety assessment
- Bioaccumulation potential:
- low bioaccumulation potential
- Absorption rate - oral (%):
- 50
- Absorption rate - dermal (%):
- 50
- Absorption rate - inhalation (%):
- 50
Additional information
In aqueous environments, such as the body the nitric acid, ammonium calcium salt is completely dissociated into the calcium (Ca2 +), ammonium (NH4 +) and the nitrate (NO3-) ions.
Nitrate is reduced to nitrite by the enzyme nitrate reductase. This enzyme is found in plants, certain bacterial species, and mammalian gastric tissues. After ingestion, nitrates are reduced to nitrites by bacteria in the lower intestine of the adult. However, in babies, which have a physiological gastric achlorhydria (lack of HCl in the stomach), the reduction occurs in the stomach and duodenum from which the nitrites are readily absorbed into the blood stream. Furthermore, methemoglobin-reductase (NADH-cytochrome b5 reductase) in infants has not yet reached full activity. After absorption, nitrites convert oxyhemoglobin into methemoglobin and thus interfere with oxygen transport in the blood, resulting in methemoglobineamia (¿blue baby syndrome¿). Nitrites can also cause vasodilation, which, like methemoglobineamia, is dose-related.
The calcium cation is an essential ion, and is present in the blood and various body fluids, playing an important role in sustaining health. The Dutch Voedingscentrum does set an acceptable daily intake of 1000 -2500 mg calcium/day.
The ammonium cation is not an essential ion, but a toxic waste product from animal metabolism that is re-used in protein synthesis via glutamate. Depending on the animal species, ammonium will be directly excreted to the environment or it will first be converted to urea, which is less toxic and can be stored more efficiently.
Based on low MW, high water solubility, assumed low logPow high absorption is expected. However, the ion formation of the substance inmediately when in contact with a fluid decreases the absorption. Therefore, 50% absorption is taken for oral, dermal and inhalation exposure.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.
