Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 248-666-3 | CAS number: 27813-02-1
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Genetic toxicity: in vivo
Administrative data
- Endpoint:
- genetic toxicity in vivo
- Remarks:
- Type of genotoxicity: chromosome aberration
- Type of information:
- experimental study
- Adequacy of study:
- key study
- Reliability:
- 2 (reliable with restrictions)
- Rationale for reliability incl. deficiencies:
- other: Documentation sufficient for assessment
Data source
Reference
- Reference Type:
- publication
- Title:
- Induced DNA Damage by Dental Resin Monomers in Somatic Cells
- Author:
- Arossi, G.A., Lehmann, M., Dihl, R.R., Reguly, M.L.and de Andrade, H.H.R.
- Year:
- 2 009
- Bibliographic source:
- Basic and Clinical Pharmacology and Toxicology 106, 124-129
Materials and methods
- Principles of method if other than guideline:
- Somatic Mutation and Recombinogenic Test (SMART) to detect mitotic recombination and a diverse set of mutational events.
- GLP compliance:
- not specified
- Remarks:
- information not provided in publication
- Type of assay:
- somatic mutation and recombination test in Drosophila
Test material
- Reference substance name:
- 2-hydroxyethyl methacrylate
- EC Number:
- 212-782-2
- EC Name:
- 2-hydroxyethyl methacrylate
- Cas Number:
- 868-77-9
- Molecular formula:
- C6H10O3
- IUPAC Name:
- 2-hydroxyethyl methacrylate
- Details on test material:
- - Name of test material (as cited in study report): HEMA
Constituent 1
Test animals
- Species:
- Drosophila melanogaster
- Sex:
- male/female
- Details on test animals or test system and environmental conditions:
- The monomer genetic toxicities were accessed using the Standard Cross version of the wing SMART test: flr3 ⁄TM3, BdS females crossed with mwh ⁄mwh males. Eggs from this cross were collected for 8 hr on culture bottle containing a solid agar base (3% w⁄ v) enriched with a layer of live fermenting
baker’s yeast supplemented with sucrose. Three days later the larvae were transferred to vials containing 1.5 g of Drosophila Instant Medium (Carolina Biological Supply, Burlington, NC, USA) rehydrated with 5 ml of the test solutions.
Administration / exposure
- Vehicle:
- - Vehicle(s)/solvent(s) used: water
- Details on exposure:
- The monomer genetic toxicities were accessed using the Standard Cross version of the wing SMART test: flr3 ⁄TM3, BdS females crossed with mwh ⁄mwh males. Eggs from this cross were collected for 8 hr on culture bottle containing a solid agar base (3% w⁄ v) enriched with a layer of live fermenting
baker’s yeast supplemented with sucrose. Three days later the larvae were transferred to vials containing 1.5 g of Drosophila Instant Medium (Carolina Biological Supply, Burlington, NC, USA) rehydrated with 5 ml of the test solutions. Negative solvent controls were always included. The treated individuals remained in the vials until the emergence of the surviving adult flies. - Duration of treatment / exposure:
- Flies were collected after eclosion
- Frequency of treatment:
- Eggs from the cross were collected for 8 hr. Three days later the larvae were transferred to vials containing 1.5 g of Drosophila Instant Medium rehydrated with 5 ml of the test solutions. Flies were collected after eclosion.
Doses / concentrations
- Remarks:
- Doses / Concentrations:
HEMA diluted in distilled water – 0.675%, 1.25%, 1.875% and 2.5%
Basis:
- No. of animals per sex per dose:
- 30 total
- Control animals:
- yes
- Positive control(s):
- ethyl methanesulfonate
Examinations
- Tissues and cell types examined:
- presence of cell clones showing malformed wing hairs
number of spots as well as their type and size - Details of tissue and slide preparation:
- After eclosion, the flies were collected from the treatment vials and stored in 70% ethanol. Subsequently, the wings were mounted on slides and scored under 400 X· magnification for the presence of cell clones showing malformed wing hairs. The number of spots as well as their type and size were recorded. In test larvae, two genotype configurations are possible: trans-heterozygous for the recessive wing cell markers [mwh and flr3 (mwh +⁄+ flr3)], and balancer- heterozygous (mwh ⁄TM3). Induced loss of heterozygosity on marker-heterozygous flies leads to two types of mutant clones: (i) single spots, either mwh and flr3, which can be produced by somatic point mutation, chromosome aberration as well as mitotic recombination and (ii) twin spots, consisting of both mwh and flr3 sub clones, which are originated exclusively from mitotic recombination. On balancer-heterozygous flies, mwh spots should reflect somatic point mutation and chromosome aberration, as mitotic recombination – involving the TM3 chromosome and its structurally normal homologue – is a lethal event.
- Evaluation criteria:
- We considered the treatment as positive if the frequency of mutant clones in the treated series was at least m (multiplication factor) times higher than that in the control series.
- Statistics:
- The conditional binomial test of Kastenbaun and Bowman [1970] was applied to assess differences between the frequencies of each spot type in treated and concurrent NC flies. The multiple decision procedure described by Frei and Wrgler [1988, 1995] was used to judge the overall response of an agent as positive, weakly positive, negative or inconclusive. We considered the treatment as positive if the frequency of mutant clones in the treated series was at least m (multiplication factor) times higher than that in the control series. As small single spots and total spots have a comparatively high spontaneous frequency, m was fixed as 2 (testing for a doubling of the spontaneous frequency). For large single spots and twin spots, which have a low spontaneous frequency, m = 5 was used. The recombinagenic action of the drugs was calculated comparing the standard frequency of clones per 105 cells obtained from mwh ⁄ flr3 and mwh ⁄TM3 genotypes. For an unbiased comparison of this frequency, only mwh clones in mwh single spots and in twin spots were used.
Results and discussion
Test results
- Sex:
- male/female
- Genotoxicity:
- negative
- Toxicity:
- no effects
- Vehicle controls validity:
- valid
- Negative controls validity:
- not applicable
- Positive controls validity:
- valid
- Additional information on results:
- HEMA did not have a significant effect on total spot frequencies in marker-heterozygous (mwh ⁄ flr3) flies analysed, suggesting that HEMA does not act as a genotoxin in the SMART assay.
Applicant's summary and conclusion
- Conclusions:
- Interpretation of results: negative
HEMA did not have a significant effect on total spot frequencies in marker-heterozygous (mwh ⁄ flr3) flies analysed, suggesting that HEMA does not act as a genotoxin in the SMART assay. - Executive summary:
The present in vivo study investigated the genotoxicity of hydroxyethylmethacrylate (HEMA). The Somatic Mutation and Recombination Test (SMART) in Drosophila melanogaster was applied to analyse their genotoxicity expressed as homologous mitotic recombination, point and chromosomal mutation. SMART detects the loss of heterozygosity of marker genes expressed phenotypically on the fly’s wings. This fruit fly has an extensive genetic homology to mammalians, which makes it a suitable model organism for genotoxic investigations. HEMA had no statistically significant effect on total spot frequencies – suggesting no genotoxic action in the SMART assay. The clinical significance of these observations has to be interpreted for data obtained in other bioassays.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.