Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 918-481-9 | CAS number: -
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Endpoint summary
Administrative data
Description of key information
Adsorption / desorption:
Hydrocarbons, C10 -C13, n-alkanes, isoalkanes, cyclics, <2% aromatics are hydrocarbon UVCB's. Standard tests for this endpoint are intended for single substances and are not appropriate for this complex substance. However, this endpoint is characterised using quantitative structure property relationships for representative hydrocarbon structures that comprise the hydrocarbon blocks used to assess the environmental risk of this substance with the PETRORISK model (see Product Library in PETRORISK report attached in IUCLID section 13).
Adsorption coefficient has been calculated using Petrorisk. The Koc for Hydrocarbons, C10 -C13, n-alkanes, isoalkanes, cyclics, <2% aromatics ranges from 4.68 x10^2 - 8.91 x10^5.
Volatilisation:
Volatilisation is dependent on Henry's Constant (HC) which is not applicable to complex substances. However, HC values for representative structures are included in the PETRORISK spreadsheet attached to IUCLID Section 13.
Henry's law constant for decane has been estimated in the Concawe library, using SPARC v4.2 program. The obtained value is 3.311 atm-m3/mol.
Henry's law constant for undecane has been estimated in the Concawe library, using SPARC v4.2 program. The obtained value is 4.47 atm-m3/mol.
Henry's law constant for dodecane has been estimated in the Concawe library, using SPARC v4.2 program. The obtained value is 6.17 atm-m3/mol.
Henry's law constant for tetradecane has been estimated in the Concawe library, using SPARC v4.2 program. The obtained value is 11.48 atm-m3/mol.
Distribution modelling:
The distribution of C9 -C14 Aliphatics (<2% aromatics) in the environmental compartments, air, water, soil, and sediment, has been calculated using the PETRORISK Model, version 5.2/5.3.Computer modeling is an accepted method for estimating the environmental distribution of chemicalsDistribution modelling results are included in the 'Multimedia distribution modelling results' tab in the PETRORISK spreadsheet attached to IUCLID section 13.
Based on the regional scale exposure assessment, the multimedia distribution of Hydrocarbons, C9-C11, n-alkanes, isoalkanes, cyclics, <2% aromatics is 80.0 % to air, 3.6 % to water, 3.4 % to soil and 13.0 % to sediment.
Based on the regional scale exposure assessment, the multimedia distribution of Hydrocarbons, C9-C11, isoalkanes, cyclics, <2% aromatics is 69.5 % to air, 5.5 % to water, 5.2 % to soil and 19.8 % to sediment.
Based on the regional scale exposure assessment, the multimedia distribution of decane is 48.62 % to air, 5.98 % to water, 9.49 % to soil and 35.91 % to sediment.
Based on the regional scale exposure assessment, the multimedia distribution of Hydrocarbons, C10-C13, isoalkanes, cyclics, <2% aromatics is 46.1 % to air, 2.7 % to water, 15.1 % to soil and 36.1 % to sediment.
Based on the regional scale exposure assessment, the multimedia distribution of of Hydrocarbons, C10-C14, (even numbered), n-alkanes, isoalkanes, <2% aromatics is 45.2 % to air, 2.5 % to water, 16.1 % to soil and 36.2 % to sediment.
Based on the regional scale exposure assessment, the multimedia distribution of undecane is 41.8 % to air, 2.71 % to water, 8.17 % to soil and 47.32 % to sediment.
Based on the regional scale exposure assessment, the multimedia distribution of dodecane is 39.52 % to air, 2.4 % to water, 20.04 % to soil and 38.04 % to sediment.
Based on the regional scale exposure assessment, the multimedia distribution of Hydrocarbons, C12-C13, isoalkanes, cyclics, <2% aromatics is 28.0 % to air, 2.81 % to water, 22.03 % to soil and 47.04 % to sediment.
Based on the regional scale exposure assessment, the multimedia distribution of Hydrocarbons, C13-C15, n-alkanes, isoalkanes, cyclics, <2% aromatics is 3.9 % to air, 1.1 % to water, 8.9 % to soil and 86.1 % to sediment.
Based on the regional scale exposure assessment, the multimedia distribution of tetradecane is 4.25 % to air, 0.61 % to water, 7.83 % to soil and 87.31 % to sediment.
Based on the regional scale exposure assessment, the multimedia distribution of hexadecane is 5.13 % to air, 0.1 % to water, 89.03 % to sediment and 5.74 % to soil.
Based on the regional scale exposure assessment, the multimedia distribution of isododecane is 39.52 % to air, 2.4 % to water, 20.04 % to soil and 38.04 % to sediment.
Additional information
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.