Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 219-784-2 | CAS number: 2530-83-8
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Toxicity to aquatic algae and cyanobacteria
Administrative data
Link to relevant study record(s)
- Endpoint:
- toxicity to aquatic algae and cyanobacteria
- Type of information:
- experimental study
- Adequacy of study:
- key study
- Reliability:
- 2 (reliable with restrictions)
- Rationale for reliability incl. deficiencies:
- guideline study with acceptable restrictions
- Remarks:
- The studies were conducted following a recognized guideline (OPPTS 850.5400) and are sufficiently documented for assessment. The most significant restriction is the lack of analytical verification. A concentrated stock solution and carrier solvent were used to prepare the test solutions for the study. Under the conditions described for preparation of the concentrated stock solution, the test material 3-glycidoxypropyl-trimethoxysilane could have significantly hydrolysed to 3-glycidoxypropyl-silanetriol, which could have condensed to insoluble siloxane resins.
- Qualifier:
- according to guideline
- Guideline:
- OECD Guideline 201 (Alga, Growth Inhibition Test)
- Qualifier:
- according to guideline
- Guideline:
- EPA OPPTS 850.5400 (Algal Toxicity, Tiers I and II) (January 2012)
- GLP compliance:
- yes
- Analytical monitoring:
- no
- Vehicle:
- yes
- Details on test solutions:
- PREPARATION AND APPLICATION OF TEST SOLUTION
- Method: A 1000 mg a.i./L stock solution was prepared by placing 1.889 mL (2.0212 g based on a density of 1.07 g/mL, 1.9969 g as active ingredient) of glycidoxy in a 2000 mL volumetric flask and diluting to volume with sterile AAP medium containing 0.10 mL/L of dimethyl formamide (DMF, CAS No. 68-12-2). The resulting stock solution was stirred using a magnetic stir plate and stir for 15 minutes. Nominal test concentrations were prepared from dilutions of the 1000 mg a.i./L stock solution. - Test organisms (species):
- Raphidocelis subcapitata (previous names: Pseudokirchneriella subcapitata, Selenastrum capricornutum)
- Details on test organisms:
- TEST ORGANISM
- Strain: 1648
- Source (laboratory, culture collection): The alga was obtained from Carolina Biological Supply Co., Burlington, North Carolina, and was maintained in stock culture at Springborn Smithers.
- Culture conditions: The stock cultures were maintained within the following conditions: a shaking rate of 100 ± 10 rpm, a temperature of 24 ± 1 °C and continuous illumination at the surface of the medium with an intensity of approximately 300 to 500 footcandles (3200 to 5400 lux). Lighting was supplied by Duro-Test® Vita-Lite® fluorescent bulbs. Culture flasks were agitated continuously on an orbital shaker.
- Growth/test medium: The culture medium used was Algal Assay Procedure (AAP) medium prepared with sterile, deionized water. - Test type:
- static
- Water media type:
- freshwater
- Limit test:
- no
- Total exposure duration:
- 96 h
- Hardness:
- No data
- Test temperature:
- 23 to 24 °C
- pH:
- 7.0-8.5
- Dissolved oxygen:
- No data
- Salinity:
- No data
- Nominal and measured concentrations:
- Nominal test concentrations: 31, 63, 130, 250, 500 and 1000 mg a.i./L.
- Details on test conditions:
- TEST SYSTEM
- Growth/test medium: The culture medium used was Algal Assay Procedure (AAP) medium prepared with sterile, deionized water.
- Exposure vessel type: The test was conducted in sterile 250-mL Erlenmeyer flasks containing 100-mL of test solution. All test vessels were fitted with stainless steel caps which permit gas exchange.
- Water chemistry in test: TOC concentration of the AAP sample collected in January 2002 was 0.47 mg/L. The dilution water and solvent control vessels both had a specific conductivity of 90 mmhos/cm at test initiation and at test termination. pH measured in the dilution water and solvent control vessels were 7.3 and 7.1 respectively, at test initiation and 8.4 and 8.5 respectively, at test termination. The 1000 mg a.i./L treatment level had a specific conductivity of 70 mmhos/cm at test initiation and 80 mmhos at test termination. pH measured in the 1000 mg a.i./L treatment level was 7.0 at test initiation and 7.2 at test termination.
- Light levels and quality during exposure: 340 - 440 footcandles (3700 - 4700 lux). The photosynthetically-active radiation (PAR) of the test area measured at test initiation ranged from 50 to 69 µE/m2/s.
- Test Design: Approximately 30 minutes after the test solutions were added to the test flasks (100 mL per flask), a 0.216-mL inoculum of Pseudokirchneriella subcapitata cells, at a density of approximately 464 x 104 cells/mL, was aseptically introduced into each flask. This inoculum provided the required initial (0 hour) cell density of approximately 1.0 x 104 cells/mL. Three replicate test vessels were established for each treatment level, the dilution water control and the solvent control. - Reference substance (positive control):
- no
- Duration:
- 96 h
- Dose descriptor:
- NOEC
- Effect conc.:
- 130 mg/L
- Nominal / measured:
- nominal
- Conc. based on:
- test mat.
- Basis for effect:
- growth rate
- Duration:
- 96 h
- Dose descriptor:
- EC50
- Effect conc.:
- 350 mg/L
- Nominal / measured:
- nominal
- Conc. based on:
- test mat.
- Basis for effect:
- growth rate
- Remarks on result:
- other: 170-720
- Duration:
- 96 h
- Dose descriptor:
- NOEC
- Effect conc.:
- 350 mg/L
- Nominal / measured:
- nominal
- Conc. based on:
- test mat.
- Basis for effect:
- biomass
- Duration:
- 96 h
- Dose descriptor:
- EC50
- Effect conc.:
- 250 mg/L
- Nominal / measured:
- nominal
- Conc. based on:
- test mat.
- Basis for effect:
- biomass
- Remarks on result:
- other: 140-450
- Reported statistics and error estimates:
- Statistical methods: Shapiro-Wilks' Test , Bartlett's Test , Williams' Test, Kruskal-Wallis' Test, Bonferroni's test.
- Validity criteria fulfilled:
- yes
- Conclusions:
- A 96-hour EC50 value of 350 mg/L and NOEC of 130 mg/L have been determined for the effects of the test substance on growth rate of Selenastrum capricornutum (new name: Pseudokirchnerella subcapitata). It is likely that the test organisms were primarily exposed to the hydrolysis products of the substance.
Reference
Cell Density
Cell densities in the 31, 63, 130, 250, 500 and 1000 mg a.i./L treatment levels averaged 83, 136, 137, 89, 11 and 0 x 10E4 cells/mL, respectively. Statistical analysis based on Williams' Test determined a significant reduction in cell density in all treatment level tested as compared to the pooled control. Based on Williams' Test the NOEC was determined to be <31 mg a.i./L. Additional statistical analysis (Bonferroni's Test) determined a significant
reduction in cell density in the 31, 250, 500 and 1000 mg a.i./L treatments. The effect on the 31 mg a.i./L treatment level is not considered treatment-related since the two higher concentrations (63 and 130 mg a.i./L) were not affected and were less than 10% inhibited. Therefore, the NOEC was determined to be 130 mg a.i./L. The 96 hour EC50 for cell density was calculated to be 260 mg a.i./L, with 95% confidence intervals of 190 and 360 mg a.i./L.
Biomass
Biomass in the 31, 63, 130, 250, 500 and 1000 mg a.i./L treatment levels averaged 35, 53, 37, 20, 3.6 and 0.7 cells·days/mL, respectively. Statistical analysis (Williams' Test) determined a significant difference in biomass in the 250, 500 and 1000 mg a.i./L any treatment levels tested when compared to the biomass in the pooled control. Therefore, the NOEC was determined to be 130 mg
a.i./L. The 72 hour EbC50 was calculated to be 250 mg a.i./L, with 95% confidence intervals of 140 and 450 mg a.i./L.
Growth Rate
The 0- to 72 hour growth rate in the 31, 63, 130, 250, 500 and 1000 mg a.i./L treatment levels averaged 1.17, 1.37,1.24, 0.99, 0.32 and -0.6 days-1, respectively. Statistical analysis (Kruskal-Wallis' Test) did not determine a
significant reduction in any treatment level tested when compared to the growth rate in the pooled control. Since the Kruskal-Wallis' Test did not provide a reasonable NOEC (1000 mg a.i./L), the NOEC was empirically estimated to be
130 mg a.i./L, the highest concentration with less than 10% inhibition. The 72 hour ErC50 was calculated to be 350 mg a.i./L, with 95% confidence intervals of 170 and 720 mg a.i./L.
Description of key information
Toxicity to algae: 96 hour ErC50 350 mg/l and 96 hour NOEC 130 mg/l (growth rate) (nominal) (OECD 201). The ErC50 and NOEC are equivalent to 288 mg/l and 107 mg/l when expressed in terms of the concentration of the silanol hydrolysis product [3-(2,3-epoxypropoxy)propyl]silanetriol.
Key value for chemical safety assessment
- EC50 for freshwater algae:
- 288 mg/L
- EC10 or NOEC for freshwater algae:
- 107 mg/L
Additional information
A 96 hour ErC50 value of 350 mg/l and NOEC of 130 mg/l (nominal) have been determined for the effects of [3-(2,3-epoxypropoxy)propyl]trimethoxysilane on growth rate of Pseudokirchneriella subcapitata (SEHSC, 2002). In view of the media preparation and exposure regime, it is likely that the test organisms were exposed predominantly to the hydrolysis products of the substance.
The results may be expressed in terms of concentration of the hydrolysis product, [3-(2,3-epoxypropoxy)propyl]silanetriol, by applying a molecular weight correction: (MW of silanol = 194.26 / MW of parent = 236.34) * EC50 350 mg/l and NOEC 130 mg/l = EC50 288 mg/l and NOEC 107 mg/l.
This study has been selected as key because it has lower effect concentrations than the other reliable study.
Supporting data with the registration substance are available:
A 72 hour ErC50 value of >420 mg/l and ErC10 of 190 mg/l have been determined for the effects of [3-(2,3-epoxypropoxy)propyl]trimethoxysilane on growth rate of Desmodesmus subspicatus (Hüls, 1993). In view of the media preparation and exposure regime, it is likely that the test organisms were exposed predominantly to the hydrolysis products of the substance.
A 7 day EC50 value of 119 mg/l and EC10 value of 40 mg/l have been determined for the effects on growth rate of Anabaena flos-aquae (blue-green algae) (Dow Corning, 1978). The NOEC was 50 mg/l, the lowest test concentration. It is likely that the test organisms were exposed predominantly to the hydrolysis products of the substance. However, the duration of this test is longer than standard, and in the absence of sufficient evidence reported in the original study, it must be assumed that the algal culture may not have remained in exponential growth throughout the exposure period (in accordance with guidance in Part R7b, ECHA, 2017) which would make the results unsuitable for use in the chemical safety assessment. Therefore, this NOEC is not a suitable basis for deriving PNEC and the study has been assigned reliability 4.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.