Registration Dossier

Data platform availability banner - registered substances factsheets

Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.

The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.

Diss Factsheets

Toxicological information

Genetic toxicity: in vitro

Currently viewing:

Administrative data

Endpoint:
in vitro gene mutation study in bacteria
Remarks:
Type of genotoxicity: gene mutation
Type of information:
experimental study
Adequacy of study:
key study
Study period:
From September 2006 to October 2007
Reliability:
1 (reliable without restriction)
Rationale for reliability incl. deficiencies:
guideline study

Data source

Reference
Reference Type:
study report
Title:
Unnamed
Year:
2008
Report date:
2008

Materials and methods

Test guidelineopen allclose all
Qualifier:
according to guideline
Guideline:
OECD Guideline 471 (Bacterial Reverse Mutation Assay)
Deviations:
no
Qualifier:
according to guideline
Guideline:
EU Method B.13/14 (Mutagenicity - Reverse Mutation Test Using Bacteria)
Deviations:
no
GLP compliance:
yes
Type of assay:
bacterial reverse mutation assay

Test material

Constituent 1
Chemical structure
Reference substance name:
Tris(2-ethylhexyl) benzene-1,2,4-tricarboxylate
EC Number:
222-020-0
EC Name:
Tris(2-ethylhexyl) benzene-1,2,4-tricarboxylate
Cas Number:
3319-31-1
Molecular formula:
C33H54O6
IUPAC Name:
tris(2-ethylhexyl) benzene-1,2,4-tricarboxylate
Details on test material:
- Name of test material (as cited in study report):DIPLAST TM/MG
- Physical state:colourless clear liquid
- Lot/batch No.:2117207170
- Expiration date of the lot/batch:3 years
- Storage condition of test material:room temperature
- Purity: 99.98%

Method

Species / strainopen allclose all
Species / strain / cell type:
S. typhimurium TA 1535, TA 1537, TA 98 and TA 100
Species / strain / cell type:
E. coli WP2 uvr A
Metabolic activation:
with and without
Metabolic activation system:
S9
Test concentrations with justification for top dose:
A maximum dose-level of 5000 ug/plate and four lower concentrations of 1580, 500, 158 and 50.0 ug/plate
Vehicle / solvent:
Solvent used: Ethanol
Controlsopen allclose all
Untreated negative controls:
yes
Negative solvent / vehicle controls:
yes
True negative controls:
no
Positive controls:
yes
Positive control substance:
sodium azide
Remarks:
Strains TA100 and TA1535; -S9
Untreated negative controls:
yes
Negative solvent / vehicle controls:
yes
True negative controls:
no
Positive controls:
yes
Positive control substance:
9-aminoacridine
Remarks:
Strain TA1537; -S9
Untreated negative controls:
yes
Negative solvent / vehicle controls:
yes
True negative controls:
no
Positive controls:
yes
Positive control substance:
2-nitrofluorene
Remarks:
Strain TA98; -S9
Untreated negative controls:
yes
Negative solvent / vehicle controls:
yes
True negative controls:
no
Positive controls:
yes
Positive control substance:
other: 2-Aminoanthracene
Remarks:
All strains; +S9
Untreated negative controls:
yes
Negative solvent / vehicle controls:
yes
True negative controls:
no
Positive controls:
yes
Positive control substance:
methylmethanesulfonate
Remarks:
Strain WP2uvrA; -S9
Details on test system and experimental conditions:
METHOD OF APPLICATION: in medium; in agar (plate incorporation) - Assay 1; preincubation - Assay 2

DURATION
- Preincubation period: 30 minutes
- Exposure duration: 72 hours

SELECTION AGENT (mutation assays): Histidine (S. typhimurium); tryptophan (E. coli)

NUMBER OF REPLICATIONS: 3

DETERMINATION OF CYTOTOXICITY
- Method: Reduced number of spontaneous revertants, microcolony formation, thinning of background lawn

Evaluation criteria:
For the test item to be considered mutagenic, two-fold (or more) increases in mean revertant numbers must be observed at two consecutive dose-levels or at the highest practicable dose-level only. In addition, there must be evidence of a dose-response relationship showing increasing numbers of mutant colonies with increasing dose-levels

Results and discussion

Test resultsopen allclose all
Key result
Species / strain:
S. typhimurium TA 100
Metabolic activation:
with and without
Genotoxicity:
negative
Cytotoxicity / choice of top concentrations:
no cytotoxicity nor precipitates, but tested up to recommended limit concentrations
Vehicle controls validity:
valid
Untreated negative controls validity:
valid
Positive controls validity:
valid
Key result
Species / strain:
S. typhimurium TA 98
Metabolic activation:
with and without
Cytotoxicity / choice of top concentrations:
no cytotoxicity nor precipitates, but tested up to recommended limit concentrations
Vehicle controls validity:
valid
Untreated negative controls validity:
valid
Positive controls validity:
valid
Key result
Species / strain:
S. typhimurium TA 1537
Metabolic activation:
with and without
Genotoxicity:
negative
Cytotoxicity / choice of top concentrations:
no cytotoxicity nor precipitates, but tested up to recommended limit concentrations
Vehicle controls validity:
valid
Untreated negative controls validity:
valid
Positive controls validity:
valid
Key result
Species / strain:
S. typhimurium TA 1535
Metabolic activation:
with and without
Genotoxicity:
negative
Cytotoxicity / choice of top concentrations:
no cytotoxicity nor precipitates, but tested up to recommended limit concentrations
Vehicle controls validity:
valid
Untreated negative controls validity:
valid
Positive controls validity:
valid
Key result
Species / strain:
E. coli WP2 uvr A
Metabolic activation:
with and without
Genotoxicity:
negative
Cytotoxicity / choice of top concentrations:
no cytotoxicity nor precipitates, but tested up to recommended limit concentrations
Vehicle controls validity:
valid
Untreated negative controls validity:
valid
Positive controls validity:
valid
Additional information on results:
In the initial toxicity test no toxicity was observed at any dose-level with any tester strain in the absence or presence of S9 metabolism at concentrations up to a maximum of 5000 ug/plate.
No precipitation was observed.
Remarks on result:
other: all strains/cell types tested
Remarks:
Migrated from field 'Test system'.

Any other information on results incl. tables

In Assay 1, using the plate incorporation method, the substance was tested at the maximum concentration of 5000 μg/plate and at four lower concentrations. No relevant toxicity was observed with any tester strain at any dose-level. No relevant increase in revertant numbers was observed at any concentration tested. A pre-incubation step was included for all treatments of Assay 2 in which the same concentrations were employed. No toxicity was observed at any dose-level with any tester strain.

 

No precipitation of the test item was observed at the end of the incubation period at any concentration in the plate incorporation experiment or in the pre-incubation experiment.

 

The substance did not induce increases in the number of revertant colonies in the plate incorporation or pre-incubation assay, at any dose-level, in any tester strain, in the absence or presence of S9 metabolism.

 

The sterility of the S9 mix and the test solutions was confirmed by the absence of colonies on additional agar plates spread separately with these solutions. Marked increases in revertant numbers were obtained in these tests following treatment with the positive control items, indicating that the assay system was functioning correctly.

 

Applicant's summary and conclusion

Conclusions:
It is concluded that the substance does not induce reverse mutation in Salmonella typhimurium or Escherichia coli under the reported experimental conditions.
Executive summary:

A bacterial reverse mutation assay (Ames test) has been undertaken following OECD/EU test methods.

The substance does not induce reverse mutation in Salmonella typhimurium or Escherichia coli.