Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 211-746-3 | CAS number: 693-23-2
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Direct observations: clinical cases, poisoning incidents and other
Administrative data
- Endpoint:
- direct observations: clinical cases, poisoning incidents and other
- Type of information:
- experimental study
- Adequacy of study:
- key study
- Reliability:
- 1 (reliable without restriction)
Data source
Reference
- Reference Type:
- study report
- Title:
- Unnamed
- Year:
- 2 006
Materials and methods
- Study type:
- study with volunteers
- GLP compliance:
- not specified
Test material
- Reference substance name:
- Dodecanedioic acid
- EC Number:
- 211-746-3
- EC Name:
- Dodecanedioic acid
- Cas Number:
- 693-23-2
- Molecular formula:
- C12H22O4
- IUPAC Name:
- dodecanedioic acid
Constituent 1
Method
- Subjects:
- Controls
- Number of subjects exposed: 5
- Sex: male
- Age: 46 +/-3.8 years
- Fat free mass: 48.3 +/-7.2 kg
- Body massi ndex: 26,1 +/- 2.7 kg/m²
Type 2 diabetic patients
- Number of subjects exposed: 5
- Sex: male
- Age: 57.8 +/-7.0 years
- Fat free mass: 52.9 +/-5.6 kg
- Body mass index: 28.4 +/- 4.3 kg/m²
Diabetes mellitus length 5 +/- 2 years
Glycated Hb 8.5 +/-0.8 % - Ethical approval:
- not specified
- Route of exposure:
- oral
- Reason of exposure:
- intentional
- Exposure assessment:
- measured
- Details on exposure:
- Following an 12h fast, subject ingested 40 g Dodecandioic acid in 200 mL water
Results and discussion
- Clinical signs:
- No adverse effects were noted.
Any other information on results incl. tables
The ingestion of 40g dodecanedioic acid in type 2 diabetic subjects before a moderate exercise reduces muscle fatigue and does not promote insulin secretion but rather is associated with an increase in triglyceride hydrolysis.
No adverse effects were noted.
Applicant's summary and conclusion
- Conclusions:
- The ingestion of 40g dodecanedioic acid in type 2 diabetic subjects before a moderate exercise reduces muscle fatigue and does not promote insulin secretion but rather is associated with an increase in triglyceride hydrolysis.
No adverse effects were observed. - Executive summary:
Metabolically healthy skeletal muscle possesses the ability to switch easily between glucose and fat oxidation in response to homeostatic signals. In type 2 diabetes mellitus and obesity, the skeletal muscle shows a great reduction in this metabolic flexibility. A substrate like dodecanedioic acid (C-12), able to increase skeletal muscle glycogen stores via succinyl-CoA formation, might both postpone the fatigue and increase fatty acid utilization, since it does not affect insulin secretion. In healthy volunteers and in type 2 diabetic subjects, the effect of an oral C-12 load was compared with a glucose or water load during prolonged, moderate-intensity, physical exercise. C-12 metabolism was analyzed by a mathematical model. After C-12, diabetics were able to complete the 2 h of exercise. Nonesterified fatty acids increased both during and after the exercise in the C-12 session. C-12 oxidation provided 14% of total energy expenditure, and the sum of C-12 plus lipids oxidized after the C-12 meal was significantly greater than lipids oxidized after the glucose meal (P < 0.025). The fraction of C-12 that entered the central compartment was 47% of that ingested. During the first phase of the exercise ( approximately 60 min), the mean C-12 clearance from the central compartment toward tissues was 2.57 and 1.30 l/min during the second phase of the exercise. In conclusion, C-12 seems to be a suitable energy substrate during exercise, since it reduces muscle fatigue, is rapidly oxidized, and does not stimulate insulin secretion, which implies that lipolysis is not inhibited as reported after glucose ingestion
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.