Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 201-557-4 | CAS number: 84-74-2
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Toxicity to microorganisms
Administrative data
Link to relevant study record(s)
Description of key information
Yoshioka et al. 1985 developed the test using Tetrahymena pyriformis in order to determine the toxicity of various chemicals. Pre-cultured T. pyriformis was exposed for 24 h at 30°C to DBP, and the number of T. pyriformis surviving were then counted. The concentration of the chemical, at which the proliferation of T. pyriformis was restricted to one-half of the blank test (EC50), was determined. The EC 50 for DBP was 2.2 mg/L.
Key value for chemical safety assessment
- EC50 for microorganisms:
- 2.2 mg/L
Additional information
Jonsson, S., and Baun, A., 2003 studied the toxicity of various esters to crustacean, green alga nad bacterium. Static test with saltwater bacteriaVibrio fisheriwas performed according to ISO standard method (11348 -3). The 15 min EC50 for dibutyl phthalate was established as more than 7.40 mg/L. The test cannot be used for the derivation of a PNECmicroorganisms that is relevant for a STP situation, as a saltwater species is used.
Tarkpea et al. (1986) studied using MICROTOX toxicity of Photobacterium phosphoreum. The 30 min EC50 was 10.9 mg/L.
The MICROTOX test cannot be used for the derivation of a PNECmicroorganisms that is relevant for a STP situation, as a saltwater species is used (EU RAR for DBP, 2004).
In the Pseudomonas putidatests (BASF AG, 1990) no effects of DBP were found even at concentrations above the water solubility of the substance. NOEC is more than 10 mg/L.
In the range between 19 and 2500 mg/L test substance approximately 20 % inhibition was measured. Respiration inhibition was greater than 20 %.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.