Registration Dossier

Data platform availability banner - registered substances factsheets

Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.

The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.

Diss Factsheets

Ecotoxicological information

Endpoint summary

Administrative data

Description of key information

There was no key experimental data available for this substance or structural analogues for short-term toxicity to fish, long-term toxicity to fish, short term toxicity to aquatic invertebrates, long-term toxicity to aquatic invertebrates, toxicity to aquatic algae and cyanobacteria and toxicity to microorganisms. For these endpoints, the aquatic toxicity was estimated using the PETROTOX computer model (v4.0), which combines a partitioning model used to calculate the aqueous concentration of hydrocarbon components as a function of substance loading with the Target Lipid Model used to calculate acute and chronic toxicity of nonpolar narcotic chemicals. PETROTOX computes toxicity based on the summation of the aqueous-phase concentrations of hydrocarbon block(s) that represent a hydrocarbon substance and membrane-water partitioning coefficients (KMW) that describe the partitioning of the hydrocarbons between the water and organism.

According to the harmonised CLP legislation (2008), Annex VI, this substance is classified for the environment as aquatic chronic category 2 with the hazard statement H412: Harmful to aquatic life with long lasting effects.

Additional information

Key and supporting information is summarised below:

Short-term toxicity to fish

The aquatic toxicity was estimated using the PETROTOX computer model (v4.0), which combines a partitioning model used to calculate the aqueous concentration of hydrocarbon components as a function of substance loading with the Target Lipid Model used to calculate acute and chronic toxicity of nonpolar narcotic chemicals. PETROTOX computes toxicity based on the summation of the aqueous-phase concentrations of hydrocarbon block(s) that represent a hydrocarbon substance and membrane-water partitioning coefficients (KMW) that describe the partitioning of the hydrocarbons between the water and organism.

Supporting data was available for the read-across analogues Pentane.

Long-term toxicity to fish

The aquatic toxicity was estimated using the PETROTOX computer model (v4.0), which combines a partitioning model used to calculate the aqueous concentration of hydrocarbon components as a function of substance loading with the Target Lipid Model used to calculate acute and chronic toxicity of nonpolar narcotic chemicals. PETROTOX computes toxicity based on the summation of the aqueous-phase concentrations of hydrocarbon block(s) that represent a hydrocarbon substance and membrane-water partitioning coefficients (KMW) that describe the partitioning of the hydrocarbons between the water and organism.

Short-term toxicity to aquatic invertebrates

The aquatic toxicity was estimated using the PETROTOX computer model (v4.0), which combines a partitioning model used to calculate the aqueous concentration of hydrocarbon components as a function of substance loading with the Target Lipid Model used to calculate acute and chronic toxicity of nonpolar narcotic chemicals. PETROTOX computes toxicity based on the summation of the aqueous-phase concentrations of hydrocarbon block(s) that represent a hydrocarbon substance and membrane-water partitioning coefficients (KMW) that describe the partitioning of the hydrocarbons between the water and organism.

Supporting data was available for the read-across analogues Pentane and 2 -methylbutane.

Long-term toxicity to aquatic invertebrates

The aquatic toxicity was estimated using the PETROTOX computer model (v4.0), which combines a partitioning model used to calculate the aqueous concentration of hydrocarbon components as a function of substance loading with the Target Lipid Model used to calculate acute and chronic toxicity of nonpolar narcotic chemicals. PETROTOX computes toxicity based on the summation of the aqueous-phase concentrations of hydrocarbon block(s) that represent a hydrocarbon substance and membrane-water partitioning coefficients (KMW) that describe the partitioning of the hydrocarbons between the water and organism.

Toxicity to algae and cyanobacteria

The aquatic toxicity was estimated using the PETROTOX computer model (v4.0), which combines a partitioning model used to calculate the aqueous concentration of hydrocarbon components as a function of substance loading with the Target Lipid Model used to calculate acute and chronic toxicity of nonpolar narcotic chemicals. PETROTOX computes toxicity based on the summation of the aqueous-phase concentrations of hydrocarbon block(s) that represent a hydrocarbon substance and membrane-water partitioning coefficients (KMW) that describe the partitioning of the hydrocarbons between the water and organism.

Supporting data was available for the read-across analogue Pentane.

Toxicity to microorganisms

The aquatic toxicity was estimated using the PETROTOX computer model (v4.0), which combines a partitioning model used to calculate the aqueous concentration of hydrocarbon components as a function of substance loading with the Target Lipid Model used to calculate acute and chronic toxicity of nonpolar narcotic chemicals. PETROTOX computes toxicity based on the summation of the aqueous-phase concentrations of hydrocarbon block(s) that represent a hydrocarbon substance and membrane-water partitioning coefficients (KMW) that describe the partitioning of the hydrocarbons between the water and organism.